
Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 1

DEPARTMENT OF INFORMATION TECHNOLOGY

Manual Ref. No:- PCE/IT/2020-21/4IT4-21

Session 2020-21

Name of the Lab: - Linux Shell Programming Lab

Year / Sem: <II/IV>

Lab Code: - 4IT4-21

Name of the Faculty:- Amol Saxena

Verified & Checked by: Approved by:

Mr. Amol Saxena

(HOD-IT, PCE)

Dr. Mahesh M. Bundele

Principal & Director, PCE

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 2

TABLE OF CONTENTS

S. No. Contents Page No.

1 Lab Rules 3

2 Instructions 5

3 Syllabus 6

4 Marks Scheme 7

5 Lab Plan 8

6 Introduction to the subject (Zero Lab) 11

7 Experiment-1 15

8 Experiment-2 19

9 Experiment-3 24

10 Experiment-4 26

11 Experiment-5 30

12 Experiment-6 34

13 Experiment-7 35

14 Experiment-8 35

15 Experiment-9 37

16 Experiment-10 39

17 Experiment-11 40

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 3

LAB RULES

Responsibilities of Users

Users are expected to follow some fairly obvious rules of conduct:

Do’s

 Enter the lab on time and leave at proper time.

 Wait for the previous class to leave before the next class enters.

 Keep the bag outside in the respective racks.

 Utilize lab hours in the corresponding.

 Turn off the machine before leaving the lab unless a member of lab staff has specifically

told you not to do so.

 Leave the labs at least as nice as you found them.

 If you notice a problem with a piece of equipment (e.g. a computer doesn't respond) or

the room in general (e.g. cooling, heating, lighting) please report it to lab staff

immediately. Do not attempt to fix the problem yourself.

Don’ts

 Don't abuse the equipment.

 Do not adjust the heat or air conditioners. If you feel the temperature is not properly set,

inform lab staff; we will attempt to maintain a balance that is healthy for people and

machines.

 Do not attempt to reboot a computer. Report problems to lab staff.

 Do not remove or modify any software or file without permission.

 Do not remove printers and machines from the network without being explicitly told to

do so by lab staff.

 Don't monopolize equipment. If you're going to be away from your machine for more

than 10 or 15 minutes, log out before leaving. This is both for the security of your

account, and to ensure that others are able to use the lab resources while you are not.

 Don’t use internet, internet chat of any kind in your regular lab schedule.

 Do not download or upload of MP3, JPG or MPEG files.

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 4

 No games are allowed in the lab sessions.

 No hardware including USB drives can be connected or disconnected in the labs without

prior permission of the lab in-charge.

 No food or drink is allowed in the lab or near any of the equipment. Aside from the fact

that it leaves a mess and attracts pests, spilling anything on a keyboard or other piece of

computer equipment could cause permanent, irreparable, and costly damage. (and in fact

has) If you need to eat or drink, take a break and do so in the canteen.

 Don’t bring any external material in the lab, except your lab record, copy and books.

 Don’t bring the mobile phones in the lab. If necessary then keep them in silence mode.

 Please be considerate of those around you, especially in terms of noise level. While labs

are a natural place for conversations of all types, kindly keep the volume turned down.

If you are having problems or questions, please go to either the faculty, lab in-charge or the lab

supporting staff. They will help you. We need your full support and cooperation for smooth

functioning of the lab.

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 5

INSTRUCTIONS

Before entering in the lab

All the students are supposed to prepare the theory regarding the next experiment.

Students are supposed to bring the practical file and the lab copy.

Previous programs should be written in the practical file.

All the students must follow the instructions, failing which he/she may not be allowed in the lab.

While working in the lab

Adhere to experimental schedule as instructed by the lab in-charge.

Get the previously executed program signed by the instructor.

Get the output of the current program checked by the instructor in the lab copy.

Each student should work on his/her assigned computer at each turn of the lab.

Take responsibility of valuable accessories.

Concentrate on the assigned practical and do not play games

If anyone caught red handed carrying any equipment of the lab, then he/she will have to face

serious consequences.

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 6

SYLLABUS

.

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 7

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 8

MARKS SCHEME

RTU Marks Scheme

Maximum Marks Allocation

Sessional End-Term Total

30 20 50

Marks Division

1st / 2nd Midterm and End-term

Experiment Viva Total

15 5 20

Attendance Performance (Internal)

Attendance Performance Total

5 15 20

Assessment of an Experiment

Total Marks – 10

Attendance Discipline Performance Record Viva Total

2 2 3 1 2 10

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 9

LAB PLAN

Total number of experiments – 11

Total number of turns required -12

Exp.

No.

Description of Experiment

0 Zero Lab Introduction Linux Shell Programming

1 Use of basic Unix shell commands: ls, mkdir, rmdir, cd, cat, banner, touch, file, wc

2 Use of basic Unix shell command sort, cut, grep

3 Basic commands - dd, dfspace, du, ulimit. Commands related to inode

4 I/O redirection and piping. Process control commands and mails.

5 Shell Programming: Shell script based on control structure- If-then-if, if-then-

else-if, nested if-else to find
5.1 Greatest among three numbers.

5.2 To find a year is leap year or not.

6 6.1 To input angles of a triangle and find out whether it is valid triangle or not.

6.2 To check whether a character is alphabet, digit or special character.

7 Shell Programming - Looping- while, until, for loops

7.1 Write a shell script to print all even and odd number from 1 to 10

7.2 Write a shell script to print table of a given number

7.3 Write a shell script to calculate factorial of a given number.

7.4 Write a shell script to print sum of all even numbers from 1 to 10.

8 Shell Programming - case structure, use of break

8.1 Write a shell script to make a basic calculator which performs addition,

subtraction, Multiplication, division

8.2 Write a shell script to print days of a week.

8.3 Write a shell script to print starting 4 months having 31 days.

9 Shell Programming – Functions

9.1 Write a shell script to find whether a number is palindrome or not.

9.2 Write a shell script to print Fibonacci series.

9.3 Write a shell script to find prime number.

9.4 Write a shell script to convert binary to decimal and decimal to binary.

10 Write a shell script to print different shapes- Diamond, triangle, square, rectangle,

hollow square etc

11 C programming
11.1 Write a C program to read N elements in an array and then find sum of all array

elements.

11.2 Write a C program to search an element in an array.

11.3 Write a C program to sort array elements in ascending or descending order

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 10

Number of turns required for

Experiment Number Turns Scheduled Day

Zero Lab 1 Day 1

Exp. 1 1 Day 2

Exp. 2 1 Day 3

Exp. 3 1 Day 4

Exp. 4 1 Day 5

Exp. 5 1 Day 6

Exp. 6 2 Day 7

Exp. 7 1 Day 8

Exp. 8 1 Day 10

Exp. 9 1 Day 11

Exp. 10 1 Day 12

Exp. 11 1 Day 13

Distribution of lab hours

Attendance 05 minutes

Explanation of experiment 30 minutes

Performance of experiment 45 minutes

Record Checking 15 minutes

Viva / Quiz / Queries 25 minutes

Total 120 minutes

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 11

Introduction to the subject (Zero Lab)

Course Objectives:

The objective of this lab is to make students familiar with the Linux command-line environment,

develop the skills of shell scripting and the process of developing C/C++ programs in Linux.

This course introduces the UNIX/Linux operating system, including: command line tools,

input/output processing, internal and external commands and shell configuration. The course

explores the use of operating system utilities such as text editors, electronic mail, file

management, scripting, and C/C++ compilers.

Lab Outcomes

On completion of this course the student should be able to:

1. Use UNIX/Linux utilities to create and manage simple file processing operations, organize

directory structures with appropriate security, process control, I/O redirection and piping,

and write shell scripts.

2. Identify appropriate Linux/Unix commands and use them to perform advanced shell

programming.

3. Create C/ C++ programs and execute them in Linux environment.

4. Demonstrate skills to use various Linux tools and utilities in command line environment.

5. Write lab records in professional manner and submit timely without copying from other

sources.

6. Orally present the lab work in unambiguous manner with proper linkage with required

concepts.

LO-PO & PSO Mapping

LO PO

1

PO

2

PO

3

PO

4

PO

5

PO

6

PO

7

PO

8

PO

9

PO

10

PO

11

PO

12

PS

O1

PS

O2

PS

O3

LO1 3 - - - - - - - - - - - 3 - -

LO2 - 3 - - - - - - - - - - - 3 -

LO3 - - 3 - - - - - - - - - - - 3

LO4 - - - - 3 - - - - - - - - - 2

LO5 - - - - - - - 3 - - - - - - -

LO6 - - - - - - - - - 3 - - - - -

Software required: -

Linux OS - Ububtu/ RedHat/ Caldera

Students may also use Cygwin Linux environment on top of Windows OS.

Hardware required (optional):-

Only PCs are required.

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 12

Software / Platform / Tool Installation Procedure

Cygwin Installation Guide

Cygwin is a POSIX-compatible programming and runtime environment that runs natively on

Microsoft Windows. Under Cygwin, source code designed for Unix-like operating systems may

be compiled with minimal modification and executed.

Use the following link to Installing and Updating Cygwin for 64-bit versions of Windows.

https://www.cygwin.com/install.html

Linux Introduction

Linux is a free open source UNIX based OS for PCs that was originally developed in 1991 by

Linus Torvalds, a Finnish undergraduate student. Linux conforms to a set of IEEE standards

called POSIX (Portable Operating System Interface).

The open source nature of Linux means that the source code for the Linux kernel is freely

available so that anyone can add features and correct deficiencies. This approach has been very

successful and what started as one person's project has now turned into a collaboration of

hundreds of volunteer developers from around the globe.

The open source approach has not just successfully been applied to kernel code, but also to

application programs for Linux.

As Linux has become more popular, several different development streams or distributions have

emerged, e.g. Redhat, Slackware, Mandrake, Debian, Ubuntu and Caldera. A distribution

comprises a prepackaged kernel, system utilities, GUI interfaces and application programs.

Redhat is one of the most popular distribution because it has been ported to a large number of

hardware platforms (including Intel, Alpha, and SPARC), it is easy to use and install and it

comes with a comprehensive set of utilities and applications including the X Windows graphics

system, GNOME and KDE GUI environments, and the Star Office suite (an open source MS-

Office clone for Linux).

Architecture of the Linux Operating System

Linux has all of the components of a typical OS

Kernel
The Linux kernel includes device driver support for a large number of PC hardware devices

(graphics cards, network cards, hard disks etc.), advanced processor and memory management

features, and support for many different types of file systems.

Shells and GUIs
Linux supports two forms of command input: through textual command line shells similar to

those found on most UNIX systems (e.g. sh - the Bourne shell, bash - the Bourne again shell and

csh - the C shell) and through graphical interfaces (GUIs) such as the KDE and GNOME

window managers.

System Utilities
Virtually every system utility that we would expect to find on standard implementations of

UNIX (including every system utility described in the POSIX.2 specification) has been ported to

Linux. This includes commands such as ls, cp, grep, awk, sed, bc, wc, more, and so on. These

system utilities are designed to be powerful tools that do a single task extremely well

(e.g. grep finds text inside files while wc counts the number of words, lines and bytes inside a

https://www.cygwin.com/install.html

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 13

file). Users can often solve problems by interconnecting these tools instead of writing a large

monolithic application program.

Application programs
Linux distributions typically come with several useful application programs as standard.

Examples include the emacs editor, xv (an image viewer), gcc (a C compiler), g++ (a C++

compiler), xfig (a drawing package), latex (a powerful typesetting language) and soffice (Star

Office, which is an MS-Office style clone that can read and write Word, Excel and PowerPoint

files).

Architecture of the Linux Operating System

Linux Documentation or Help

Distributions of Linux do not typically come with hardcopy reference manuals. However, its

online documentation has always been one of Linux’s strengths. The man (or manual) and info

pages have been available via the man and info utilities since early releases of the operating

system.

The --help Option
Most GNU utilities provide a ––help option that displays information about the utility. Non-

GNU utilities may use a –h or –help option to display help information.

$ cat --help

Usage: cat [OPTION] [FILE]...

Concatenate FILE(s), or standard input, to standard output.

If the information that ––help displays runs off the screen, send the output through the less pager

using a pipe:

$ ls --help | less

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 14

man: Displays the System Manual

The man utility displays (man) pages from the system documentation in a textual environment.

This documentation is helpful when you know which utility you want to use but have forgotten

exactly how to use it.

$ man passwd

$ man ls

References

1. A Practical Guide to Linux Commands, Editors, and Shell Programming, Mark G Sobel,

Pearson Education

2. Linux: The Complete Reference by Richard Petersen, McGrawa Hill

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 15

Experiment-1

Objective:

Use of basic Unix shell commands: ls, mkdir, rmdir, cd, cat, banner, touch, file, wc

Theoretical Description including Algorithm:

1. ls command

ls -l command

Columns above indicate specific things:

Column 1 indicates information regarding file permission.

Column 2 indicates the number of links to the file.

Column 3 & 4 indicates the owner and group information.

Column 5 indicates size of the file in bytes.

Column 6 shows the date and time on which the file was recently modified.

Column 7 shows the file or directory name.

Linux ls -l --block-size=[SIZE]

If you want to display the file size of your list in a particular format or size, then you can use this

command. Just put the size in place of [SIZE] as per your requirement.

Syntax:

ls -l --block-size=[SIZE]

Example:

ls -l --block-size=M (M for megabytes, K=Kilo, G=Giga, T=Tera)

ls -d */

If you only want to display the sub-directories excluding all other files, you can use this

command.

Example:

ls -d */

Linux ls -g

If you don't want to display the owner information in your list, then you can exclude this column

with the help of this command.

Example:

ls -g

 ls -lG

If you don't want to display the group information in your list then you can exclude this column

with the help of this command.

Linux ls ~

Linux ls ~ command shows the contents of the home directory. Let us see the example of ls ~

command.

Example:

ls ~

Linux ls ../

This command contains the list of the parent directory.

In the given example, our current directory is Downloads, and by using ls ../ command, we have

listed out the content of its parent directory "home directory".

Example:

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 16

ls ../

ls -F (or --classify on GNU) to show indicators after each entry that identify the kind of file it is.

A slash (/) denotes a directory (or "folder").

An asterisk (*) denotes an executable file. This includes a binary file (compiled code) as well as

scripts (text files that have executable permission).

An at sign (@) denotes a symbolic link (or "alias").

2. mkdir – make directories

create directory[ies] if they are not already exists.

Usage: mkdir <DIREECTORY NAME>

eg. mkdir mydir

3. rmdir- Remove directories

remove directory[ies] if they are empty.

Usage: rmdir [DIRECTORY NAME]

Eg. rmdir mydir remove mydir directory if this is empty.

rm-remove files or directories

remove file[s] or directory[ies]

Usage: rm –[option] [DIRECTORY NAME OR FILE NAME]

Eg.

rm –i [FILENAME] remove file interactively. This will ask before removing file.

rm –f [FILENAME] remove file forcefully.

rm –r [FILENAME] recursively remove non empty directory.

4. cd – changes directories

Usage: cd [DIRECTORY NAME]

Eg. cd mydir

5. pwd – print working directory

Shows what directory (folder) you are in.

In Linux, your home directory is /home/username.

Usage: pwd

eg. pwd show present working directory

/home/username

6. mv-move

move or rename files or directories

Usage: mv [SOURCE DIRECTORY] [DESTINATION DIRECTORY]

mv [OLD FILENAME] [NEW FILENAME]

Eg. mv linixdir mydir renaming or moving directory linixdir as mydir. After execution of

command, the destination files are only available.

7. cp – copy

copy files and directories

Usage: cp [OPTION] SOURCE FILE] [DESTINATION FILE]

eg. cp sample.txt sample_copy.txt After execution of command, the both source and destination

files are available.

8. touch command

To make a new blank file or changing the file timestamps

Creating a blank file

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 17

e.g. touch newfile

In fact the touch command real function is to change the modification and/or access timestamps

of a file.

-a option will change the access time,

-m option can be used to change the last modified time

-t to specify the new time

-r option to set the value to be the same as another file

Note: If the time is not specified using -t or -r, then the current time will be used

touch -m -t 201205251700 thisfile

will set the last modified date of thisfile to 25th may 2012, 17:00.

touch -m -r referencefile thisfile - will set the modified date to be the same as another file

9. file command

To check the type of a file

file filename

will tell us if the file is a text file, a command file or a directory etc.

file file.txt

file.txt: ASCII text

To show just the file type pass the -b option

file -b file.txt

ASCII text

The file command can be useful as filenames in UNIX bear no relation to their file type. So a file

called somefile.csv could actually be a zip file. This can be verified by the file command.

file somefile.csv

somefile.csv: Zip archive data, at least v2.0 to extract

file command cont…

How to determine the file type of multiple files

file *.txt

The output will display the information on all .txt files in the current directory.

file *

Below is an example of what may appear when running file with a wildcard for all files:

shutdown.htm: HTML document text

si.htm: HTML document text

side0.gif: GIF image data, version 89a, 107 x 18

robots.txt: ASCII text, with CRLF line terminators

myprog.c: C source ASCII text

 file /dev/hda1 or file /dev/sda1

/dev/hda1: block special (0/0)

10. cat – concatenate files and print on the standard output

Usage: cat [OPTION] [FILE]...

eg. cat file1.txt file2.txt

cat when supplied with more than one file will concatenate the files without any header

information.

cat used to display the contents of a small file on terminal

usage: cat [file name]

cat- To create file

Usage: cat > [file name]

https://en.wikipedia.org/wiki/Device_file
https://en.wikipedia.org/wiki/Device_file
https://en.wikipedia.org/wiki/Device_file

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 18

NOTE: Press and hold CTRL key and press D to stop or to end file (CTRL+D)

cat – to apend text at the end of file

Usage: cat >> [file name]

NOTE: Press and hold CTRL key and press D to stop or to end file (CTRL+D)

11. echo – display a line of text

Usage: echo [OPTION] [string] ...

eg. echo I love India

echo $HOME

12. wc -command is used to count lines, words and characters, depending on the option used.

Usage: wc [options] [file name]

You can just print number of lines, number of words or number of charcters by using following

options:

-l: Number of lines

-w : Number of words

-c : Number of characters

Eg. wc file.txt

count number of lines, words and character (including whitespaces , newline etc) in a file.

Supporting File/Dataset:

Program:

Output:

Conclusion:

VIVA Questions:

Q. How do you list the attributes of a directory?

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 19

Experiment-2

Objective:

Use of basic Unix shell command sort, cut, grep

1. grep – print lines matching a pattern

Usage: grep [OPTION] PATTERN [FILE]...

eg. grep -i apple sample.txt

Options:

-i case-insensitive search

-n show the line# along with the matched line

-v invert match, e.g. find all lines that do NOT match

-w match entire words, rather than substrings

2. sort command

SORT command is used to sort a file, arranging the records in a particular order. By default, the

sort command sorts file assuming the contents are ASCII. Using options in sort command, it can

also be used to sort numerically.

Examples

Suppose you create a data file with name file.txt

Command :

$ cat > file.txt

abhishek

chitransh

satish

rajan

naveen

divyam

harsh

Now use the sort command

sort file.txt

Output :

abhishek

chitransh

divyam

harsh

naveen

rajan

satish

Note: This command does not actually change the input file, i.e. file.txt

Sort function with mix file i.e. uppercase and lower case :When we have a mix file with both

uppercase and lowercase letters then first the lower case letters would be sorted following with

the upper case letters .

Options with sort function

-o Option : Unix also provides us with special facilities like if you want to write the output to a

new file, output.txt, redirects the output like this or you can also use the built-in sort option -o,

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 20

which allows you to specify an output file. Using the -o option is functionally the same as

redirecting the output to a file.

sort inputfile.txt > filename.txt

sort -o filename.txt inputfile.txt

$ sort file.txt > output.txt

$ sort -o output.txt file.txt

$ cat output.txt

Output :

abhishek

chitransh

divyam

harsh

naveen

rajan

satish

-k Option : Unix provides the feature of sorting a table on the basis of any column number by

using -k option.

Use the -k option to sort on a certain column. For example, use “-k 2” to sort on the second

column.

Example :

Let us create a table with 2 columns

$ cat > employee.txt

manager 5000

clerk 4000

employee 6000

peon 3500

director 9000

guard 3000

sort -k 2n employee.txt

guard 3000

peon 3500

clerk 4000

manager 5000

employee 6000

director 9000

-r Option: Sorting In Reverse Order

sort -r file.txt

Output :

Satish

Rajan

naveen harsh

Divyam

Chitransh

abhishek

-n Option : To sort a file numerically use –n option.

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 21

This option is used to sort the file with numeric data present inside.

cat > file1.txt

50

39

15

89

200

sort -n file1.txt

Output :

15

39

50

89

200

3. cut command

The cut command in UNIX is a command for cutting out the sections from each line of files and

writing the result to standard output. It can be used to cut parts of a line by byte position,

character and field. Basically the cut command slices a line and extracts the text.

Syntax:

cut OPTION... [FILE]...
Let us consider a files having name state.txt that contains 5 names of the Indian states.

$ cat state.txt
Andhra Pradesh

Arunachal Pradesh

Assam

Bihar

Chhattisgarh

Options and their Description with examples:
1. -b(byte): To extract the specific bytes, you need to follow -b option with the list of byte

numbers separated by comma. Range of bytes can also be specified using the hyphen(-). It is

necessary to specify list of byte numbers otherwise it gives error. Tabs and backspaces are

treated like as a character of 1 byte.

List without ranges

$ cut -b 1,2,3 state.txt
And

Aru

Ass

Bih

Chh

List with ranges

$ cut -b 1-3,5-7 state.txt
Andra

Aruach

Assm

Bihr

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 22

Chhtti

It uses a special form for selecting bytes from beginning upto the end of the line:

In this, 1- indicate from 1st byte to end byte of a line

$ cut -b 1- state.txt
Andhra Pradesh

Arunachal Pradesh

Assam

Bihar

Chhattisgarh

In this, -3 indicate from 1st byte to 3rd byte of a line

$ cut -b -3 state.txt
And

Aru

Ass

Bih

Chh

2.1.1. -b(byte): To extract the specific bytes, you need to follow -b option with the list of byte

numbers separated by comma. Range of bytes can also be specified using the hyphen(-).

$cut -c [(k)-(n)/(k),(n)/(n)] filename
Here,k denotes the starting position of the character and n denotes the ending position of the

character in each line, if k and n are separated by “-” otherwise they are only the position of

character in each line from the file taken as an input.

$ cut -c 2,5,7 state.txt
nr

rah

sm

ir

hti

Above cut command prints second, fifth and seventh character from each line of the file.

$ cut -c 1-7 state.txt
Andhra

Arunach

Assam

Bihar

Chhatti

Above cut command prints first seven characters of each line from the file.

Cut uses a special form for selecting characters from beginning upto the end of the line:

$ cut -c 1- state.txt
Andhra Pradesh

Arunachal Pradesh

Assam

Bihar

Chhattisgarh

 Above command prints starting from first character to end. Here in command only starting

position is specified and the ending position is omitted.

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 23

$ cut -c -5 state.txt
Andhr

Aruna

Assam

Bihar

Chhat

Above command prints starting position to the fifth character. Here the starting position is

omitted and the ending position is specified.

3. -f (field): -c option is useful for fixed-length lines. Most unix files doesn’t have fixed-length

lines. To extract the useful information you need to cut by fields rather than columns. List of the

fields number specified must be separated by comma. Ranges are not described with -f

option. cut uses tab as a default field delimiter but can also work with other delimiter by using -

d option.

Note: Space is not considered as delimiter in UNIX.

Syntax:

$cut -d "delimiter" -f (field number) file.txt
Like in the file state.txt fields are separated by space if -d option is not used then it prints whole

line:

$ cut -f 1 state.txt
Andhra Pradesh

Arunachal Pradesh

Assam

Bihar

Chhattisgarh

If -d option is used then it considered space as a field separator or delimiter:

$ cut -d " " -f 1 state.txt
Andhra

Arunachal

Assam

Bihar

Chhattisgarh

Command prints field from first to fourth of each line from the file.

Command:
$ cut -d " " -f 1-4 state.txt

Output:
Andhra Pradesh

Arunachal Pradesh

Assam

Bihar

Chhattisgarh

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 24

Experiment-3

Objective

Basic commands - dd, dfspace, du, ulimit. Commands related to inode

1. ‘dd’ command

The dd command stands for “data duplicator” and used for copying and converting data. It is

very powerful low level utility of Linux which can do much more like;

• Backup and restore the entire hard disk or partition.

• Backup of MBR (Master Boot Record)

• It can copy and convert magnetic tape format, convert between ASCII and EBCDIC

formats, swap bytes and can also convert lower case to upper case.

• It can also be used by Linux kernel make files to make boot images.

• Only superuser can run this command

Syntax

dd if=<source file name> of=<target file name> [Options]

if=<source> –This is a source from where you want to copy data and ‘if’ stands for input-file.

of=<destination> –This is a source from where you want to write/paste data and ‘of’ stands for

output-file.

Example 1: Clone one hard disk to another hard disk. This is useful when we are building many

machines with same configuration. We no need to install OS on all the machines.

dd if=/dev/sda of=/dev/sdb

Example 2: We can take backup of a partition/complete HDD for future restoration.

Backing up a partition to a file(to home directory as hdadisk.img)

dd if =/dev/sda2 of=~/hdadisk.img

Restoring this image file in to other machine

dd if=hdadisk.img of=/dev/sdb3

Example 3:

dd command can be used as file copier as well

If we don’t have cp command use dd command to copy a file from one location to other.

dd if=/home/imran/abc.txt of=/mnt/abc.txt

2. ‘du’ command

du [option(s)] [path]

This command, when executed without any parameters, shows the total disk space occupied by

files and subdirectories in the current directory.

-a

Displays the size of each individual file

-h

Output in human-readable form

-s

Displays only the calculated total size

3. ‘df’ command

df [option(s)] [directory]

https://www.linuxnix.com/linux-directory-structure-explained-dev-folder/

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 25

The df (disk free) command, when used without any options, displays information about the total

disk space, the disk space currently in use, and the free space on all the mounted drives. If a

directory is specified, the information is limited to the drive on which that directory is located.

-H or -h

shows the number of occupied blocks in gigabytes, megabytes, or kilobytes

(human-readable format)

-T

Type of file system (ext2, nfs, etc.)

4. ‘ulimit’ command

To see, set, or limit the resource usage of the current user. It is used to return the number of open

file descriptors for each process. It is also used to set restrictions on the resources used by a

process.

ulimit –a All current limits are reported

ulimit -u

To display maximum users process or for showing maximum user process limit for the logged-in

user.

ulimit –f

For showing the maximum file size a user can have.

ulimit –v

For showing maximum memory size limit.

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 26

Experiment-4

Objective

I/O redirection and piping. Process control commands and mails.

Process?

• A process is a program in execution.

• Every time you invoke a system utility or an application program from a shell, one or

more "child" processes are created by the shell in response to your command.

• All Linux processes are identified by a unique process identifier or PID.

• An important process that is always present is the init process. This is the first process to

be created when a UNIX system starts up and usually has a PID of 1

Piping

• $ cat hello.txt | sort | uniq

• creates three processes (corresponding to cat, sort and uniq) which execute concurrently.

• $ cat hello.txt | grep "dog" | grep -v "cat"

• finds all lines in hello.txt that contain the string "dog" but do not contain the string "cat".

Redirecting input and output

• Processes usually write to standard output (the screen) and take their input

from standard input (the keyboard).

• There is in fact another output channel called standard error, where processes write

their error messages; by default error messages are also sent to the screen.

• To redirect standard output to a file instead of the screen, we use the > operator:

• $ echo hello

 hello

 $ echo hello > output

 $ cat output

 hello

• In this case, the contents of the file output will be destroyed if the file already exists. If

instead we want to append the output of the echo command to the file, we can use the >>

operator:

• $ echo bye >> output

 $ cat output

 hello

 bye

• To capture standard error, prefix the > operator with a 2 (in UNIX the file numbers 0, 1

and 2 are assigned to standard input, standard output and standard error respectively),

e.g.:

• $ cat nonexistent 2>errors

 $ cat errors

 cat: nonexistent: No such file or directory

• Standard input can also be redirected using the < operator, so that input is read from a file

instead of the keyboard:

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 27

• $ cat < output

 hello

 bye

• $ cat < output > output

• will destroy the contents of the file output. This is because the first thing the shell does

when it sees the > operator is to create an empty file ready for the output.

Process control commands

Whenever we issue a command in UNIX, it creates, or starts, a new process. When we tried out

the ls command to list directory contents, you started a process (the ls command).

Each process in the system has a unique pid (process id)

When you start a process (run a command), there are two ways you can run it--in the foreground

or background.

Foreground Processes

By default, every process that you start runs in the foreground.

Background Processes

A background process runs without being connected to your keyboard. If the background process

requires any keyboard input, it waits.

The advantage of running a process in the background is that you can run other commands; you

do not have to wait until it completes to start another!

The simplest way to start a background process is to add an ampersand (&) at the end of the

command.

vi a.txt &

ls –R / | more

Moving a Foreground Process to the Background

In addition to running a process in the background using &, you can move a foreground process

into the background.

While a foreground process runs, the shell does not process any new commands. Before you can

enter any commands, you have to suspend the foreground process to get a command prompt.

The suspend key on most UNIX systems is Ctrl+Z

When a foreground process is suspended, a command prompt enables you to enter more

commands; the original process is still in memory but is not getting any CPU time.

To resume the foreground process, you have two choices--background and foreground

Moving a Foreground Process to the Background

The bg command enables you to resume the suspended process in the background; the fg

command returns it to the foreground.

Moving a Foreground Process to the Background

$ long_running_process

^Z[1] + Stopped (SIGTSTP) long_running_process

$ long_running_process2

^Z[2] + Stopped (SIGTSTP) long_running_process2

$

To move the first one to the background, I use the following:

$ bg %1

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 28

[1] long_running_process &

$

The second process is still suspended and can be moved to the background as follows:

$ bg %2

[2] long_running_process2 &

$

Moving a Background Process to the Foreground (fg Command)

When you have a process that is in the background or suspended, you can move it to the

foreground with the fg command.

By default, the process most recently suspended or moved to the background moves to the

foreground.

You can also specify which job, using its job number, you want to make foreground.

Moving a Background Process to the Foreground (fg Command)

$ long_running_process

^Z[1] + Stopped (SIGTSTP) long_running_process

$ bg

[1] long_running_process &

$

You can move it back to the foreground as follows:

$ fg %1

long_running_process

Listing Running Processes

jobs Command

The jobs command shows you the processes you have suspended and the ones running in the

background.

$ jobs

[3] + Running first_one &

[2] - Stopped (SIGTSTP) second_one

[1] Stopped (SIGTTIN) third_one &

In the above example, I have three jobs. The first one (job 3) is running, the second (job 2) is

suspended (a foreground process after I used Ctrl+Z), and the third one (job 1) is stopped in the

background to wait for keyboard input:

ps Command(Process Status)

shows all running processes

$ ps

PID TTY TIME CMD

6738 pts/6 0:00 first_one

6739 pts/6 0:00 second_one

3662 pts/6 0:00 ksh

8062 pts/6 0:00 ps

6770 pts/6 0:01 third_one

Killing a Process (kill Command)

The kill command kills, or ends, a process

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 29

To kill job number 1 in the earlier example regarding waiting for keyboard input, I use the

following:

$ kill %1

[1] - Terminated third_one &

$

We can also kill a specific process by specifying the process ID on the command line without the

percent sign used with job numbers. To kill job number 2 (process 6738) in the earlier example

using process ID, we use the following:

$ kill 6739

$

Killing a Process (kill Command)

In reality, kill does not physically kill a process; it sends the process a signal. By default, it sends

the TERM (value 15) signal.

A process can choose to ignore the TERM signal or use it to begin an orderly shut down

(flushing buffers, closing files, and so on).

If a process ignores a regular kill command, you can use kill -9 or kill -KILL followed by the

process ID or job number (prefixed with a percent sign).

This forces the process to end.

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 30

Experiment-5

Objective

Shell Programming: Shell script based on control structure- If-then-if, if-then-else-if,

nested if-else to find
5.1 Greatest among three numbers.

5.2 To find a year is leap year or not.

Shell Scripts

A shell is a program which reads and executes commands for the user. Shells also usually

provide features such job control, input and output redirection and a command language for

writing shell scripts. A shell script is simply an ordinary text file containing a series of

commands in a shell command language (just like a "batch file" under MS-DOS).

There are many different shells available on UNIX systems (e.g. sh, bash, csh, ksh, tcsh etc.),

and they each support a different command language.

Here we will discuss the command language for the Bourne shell sh since it is available on

almost all UNIX systems (and is also supported under bash and ksh).

Shell Variables and the Environment

A shell lets you define variables (like most programming languages). Once you have assigned a

value to a variable, you access its value by prefixing a $ to the name.

$ str='hello world'

$ echo $str

hello world

Variables created within a shell are local to that shell, so only that shell can access them.

The set command will show you a list of all variables currently defined in a shell. If you wish a

variable to be accessible to commands outside the shell, you can export it into the environment:

$ export str

Simple Shell Scripting

#!/bin/sh

this is a comment

echo "The number of arguments is $#"

echo "The arguments are $*"

echo "The first is $1"

echo "My process number is $$"

echo "Enter a number from the keyboard: "

read number

echo "The number you entered was $number"

The shell script begins with the line "#!/bin/sh" . Usually "#" denotes the start of a comment,

but #! is a special combination that tells UNIX to use the Bourne shell (sh) to interpret this script.

The #! must be the first two characters of the script. The arguments passed to the script can be

accessed through $1, $2, $3 etc.

$* stands for all the arguments, and $# for the number of arguments.

The process number of the shell executing the script is given by $$. The read number statement

assigns keyboard input to the variable number.

How to execute a shell script

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 31

To execute this script, we first have to make the file first executable:

$ chmod +x first

$ ls -l first

$./first hello world

Shell scripts are able to perform simple conditional branches:

if [test]

then

 commands-if-test-is-true

else

 commands-if-test-is-false

fi

The test condition may involve file characteristics or simple string or numerical comparisons.

There must be spaces before and after it as well as before the closing bracket.

Some common test conditions are:

-s file

 true if file exists and is not empty

-f file

 true if file is an ordinary file

-d file

 true if file is a directory

-r file

 true if file is readable

-w file

 true if file is writable

-x file

 true if file is executable

$X -eq $Y

 true if X equals Y

$X -ne $Y

 true if X not equal to Y

$X -lt $Y

 true if X less than $Y

$X -gt $Y

 true if X greater than $Y

$X -le $Y

 true if X less than or equal to Y

$X -ge $Y

 true if X greater than or equal to Y

"$A" = "$B"

 true if string A equals string B

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 32

"$A" != "$B"

 true if string A not equal to string B

$X ! -gt $Y

 true if string X is not greater than Y

$E -a $F

 true if expressions E and F are both true

$E -o $F

 true if either expression E or expression F is true

for loops

Sometimes we want to loop through a list of files, executing some commands on each file. We

can do this by using a for loop:

for variable in list

do

 statements (referring to $variable)

done

while loops

Another form of loop is the while loop:

while [test]

do

 statements (to be executed while test is true)

done

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 33

3.1 Greatest among three numbers.

greatest among three numbers

echo enter three numbers

read a

read b

read c

if [$a -gt $b -a $a -gt $c]

then

 max=$a

elif [$b -gt $c]

then

 max=$b

else

 max=$c

fi

echo "max = $max"

3.2 To find a year is leap year or not.

echo -n "Input year (yyyy): "

read y

a=`expr $y % 4`

b=`expr $y % 100`

c=`expr $y % 400`

if [$a -eq 0 -a $b -ne 0 -o $c -eq 0]

then

echo "$y is a leap year"

else

echo "$y is not a leap year"

fi

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 34

Experiment-6

Shell Programming: Shell script based on control structure- If-then-if, if-then-else-if,

nested if-else to find

6.1 To input angles of a triangle and find out whether it is valid triangle or not.

6.2 To check whether a character is alphabet, digit or special character.

6.3 To calculate profit or loss.

6.1 To input angles of a triangle and find out whether it is valid triangle or not.
#exp 3.3

echo "input angle a "

read a

echo "input angle b "

read b

echo "input angle c "

read c

d=`expr $a + $b + $c`

if [$a -eq 0 -o $b -eq 0 -o $c -eq 0]

then

echo "Invalid angle..."

else

if [$d == 180]

then

echo "Valid triangle"

else

echo "Invalid triangle"

fi

fi

6.2 To check whether a character is alphabet, digit or special character.

echo "Enter a single character "

read ch

echo $ch | grep [a-zA-Z]>/dev/null

if [$? -eq 0]

then

echo "Alphabet"

else

echo $ch | grep [0-9] >/dev/null

if [$? -eq 0]

then

echo "Digit"

else

echo "Special Character..."

fi

fi

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 35

Experiment 7: Write a shell script to print sum of all even numbers from 1 to 10.

s=0

i=1

while [$i -le 10]

do

 r=`expr $i % 2`

 if [$r -eq 0]

 then

 s=`expr $s + $i`

 fi

 i=`expr $i + 1`

done

echo "Sum of even numbers= $s"

Experiment 8:

8.1 Write a shell script to make a basic calculator which performs addition, subtraction,

Multiplication, division

echo "enter first num: "

read n1

echo "enter second num: "

read n2

echo "enter operator (+, -, *, /): "

read ch

case $ch in

 +)

 ans=`expr $n1 + $n2`

 ;;

 -)

 ans=`expr $n1 - $n2`

 ;;

 *)

 ans=`expr $n1 * $n2`

 ;;

 /)

 ans=`expr $n1 / $n2`

 ;;

esac

echo "Answer is: $ans"

8.2 Write a shell script to print days of a week.

echo "enter day of week"

read day

case $day in

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 36

 "sunday")

 echo "7"

 ;;

 "monday")

 echo "1"

 ;;

 "tuesday")

 echo "2"

 ;;

 "wednesday")

 echo "3"

 ;;

 "thursday")

 echo "4"

 ;;

 "friday")

 echo "5"

 ;;

 "saturday")

 echo "6"

 ;;

 *)

 echo "invalid input"

 ;;

esac

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 37

Experiment 9

Some examples of simple functions

(i)

lsl()

{

 echo "We are in lsl()"

 ls -l

 echo $1

}

#function call

lsl z1

(ii)

function foo()

{

 echo $1

 echo $2

}

foo 1 2 #function call

(iii)

function logmsg

{

 echo "`date '+%F %T'`:$1"

}

logmsg "this is a text msg"

9.1 Write a shell script to find whether a number is palindrome or not.

#to check whether a num is palindrome or not

function palindrome

{

 s=0

 n=$1

 while [$n -ne 0]

 do

 r=`expr $n % 10`

 s=`expr $s * 10 + $r`

 n=`expr $n / 10`

 done

 if [$s -eq $1]

 then

 return 1

 else

 return 0

 fi

}

echo "Enter a num.: "

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 38

read z

palindrome "$z"

echo $?

9.2 Write a shell script (using function) to print Fibonacci series.

function fib

{

 x=0

 y=1

 i=2

 echo "serief upto $n"

 echo $x

 echo $y

 while [$i -lt $n]

 do

 i=`expr $i + 1`

 z=`expr $x + $y`

 echo $z

 x=$y

 y=$z

 done

}

echo "enter number of terms: "

read n

fib $n

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 39

Experiment 10

Write a shell script to print different shapes- Diamond, triangle, square, rectangle, hollow square

etc

function hollowsquare

{

 n=$1

 i=1

 while [$i -le $n]

 do

 j=1

 while [$j -le $n]

 do

 if [$i -eq 1 -o $i -eq $n]

 then

 echo -n "*"

 else

 if [$j -eq 1 -o $j -eq $n]

 then

 echo -n "*"

 else

 echo -n " "

 fi

 fi

 j=`expr $j + 1`

 done

 i=`expr $i + 1`

 echo

 done

}

echo "enter no of terms: "

read n

hollowsquare $n

Lab Manual – 4IT4-21 Linux Shell Programming Lab PCE, Academic Year 2020-2021

P a g e | 40

Experiment 11

C programming
11.1 Write a C program to read N elements in an array and then find sum of all array elements.

#include<stdio.h>

int main()

{

 int arr[10];

 int i,n;

 sum=0;

 printf("Enter no of terms: ");

 scanf("%d",&n);

 for(i=0;i<n;i++)

 {

 printf("enter an element ");

 scanf("%d",&arr[i]);

 }

 for (i=0;i<n;i++)

 {

 printf("%d ", arr[i]);

 sum=sum+arr[i];

 }

 printf("Sum of all array elements = %d",sum);

 return 0;

}

