

Course File

Name of faculty Manish Choubisa

Class B. Tech – V SEM -B

Branch Computer Engineering

Course Code 5CS4-03

Course Name Operating System

Session 2021-2022

POORNIMA COLLEGE OF ENGINEERING, JAIPUR

DEPARTMENT OF COMPUTER ENGINEERING

Vision & Mission of Poornima College of Engineering

Vision

To create knowledge based society with scientific temper, team spirit and dignity of labor to face the

global competitive challenges.

Mission

To evolve and develop skill based systems for effective delivery of knowledge so as to equip young

professionals with dedication and commitment to excellence in all spheres of life

Vision & Mission of Department of Computer Engineering

Vision

Evolve as a centre of excellence with wider recognition and to adapt the rapid innovation in Computer

Engineering.

Mission

1) To provide a learning-centered environment that will enable students and faculty members to

achieve their goals empowering them to compete globally for the most desirable careers in

academia and industry.

2) To contribute significantly to the research and the discovery of new arenas of knowledge and

methods in the rapid developing field of Computer Engineering.

3) To support society through participation and transfer of advanced technology from one sector to

another.

POORNIMA COLLEGE OF ENGINEERING, JAIPUR
DEPARTMENT OF COMPUTER ENGINEERING

PROGRAM EDUCATIONAL OBJECTIVES (PEO’S)

PEO1: Graduates will work productively as skillful engineers playing the leading roles in multifaceted
teams

PEO2: Graduates will identify the solutions for challenging issues inspiring the upcoming generations

leading them towards innovative, creative, and sophisticated technologies.

PEO3: Graduates will implement their pioneering ideas practically to create products and the feasible

solutions of research oriented problems

PROGRAM OUTCOMES (POs)

PO1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of mathematics, natural

sciences, and engineering sciences.

PO3: Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate consideration

for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of the

information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities with an

understanding of the limitations.

PO6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for

sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and receive clear

instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and leader in

a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: The ability to understand and apply knowledge of mathematics, system analysis & design, Data

Modelling, Cloud Technology, and latest tools to develop computer based solutions in the areas of

system software, Multimedia, Web Applications, Big data analytics, IOT, Business Intelligence and

Networking systems.

PSO2: The ability to understand the evolutionary changes in computing, apply standards and ethical

practices in project development using latest tools & Technologies to solve societal problems and meet

the challenges of the future.

PSO3: The ability to employ modern computing tools and platforms to be an entrepreneur, lifelong

learning and higher studies.

POORNIMA COLLEGE OF ENGINEERING, JAIPUR

DEPARTMENT OF COMPUTER ENGINEERING

MAPPING OF KEY PHRASES OF THE INSTITUTES MISSION STATEMENT WITH THE KEY
PHRASES OF INSTITUTES VISION STATEMENT

(Institution Mission Vs Institute Vision)

Key Phrases of the Mission
Statement of the Institute

Key Phrases of the Vision Statement of the Institute

 To create knowledge based
society with scientific temper

Team
spirit

 To face the global
competitive challenges

Skill based systems for effective
delivery of knowledge 3 3

To equip young professionals
with dedication 1 3

Excellence in all spheres of life 2 2

MAPPING OF KEY PHRASES OF THE DEPARTMENTSVISION STATEMENT WITH THE KEY
PHRASES OF INSTITUTES MISSION STATEMENT

 (Department Vision Vs Institution Mission)

Key Phrases of the Vision Statement of
the Department

Key Phrases of the Mission Statement of the Institute

Skill Based
Systems

Delivery of
Knowledge

Excellence in all
spheres of life

Centre of Excellence 3 2 1

Wider recognition 2 2 1

Rapid innovation. 2 1

POORNIMA COLLEGE OF ENGINEERING, JAIPUR

DEPARTMENT OF COMPUTER ENGINEERING

MAPPING OF KEY PHRASES OF THE DEPARTMENTS MISSION STATEMENT WITH THE

KEY PHRASES OF DEPARTMENTS VISION STATEMENT
 (Department Mission Vs Department Vision)

Key Phrases of the Mission Statement of the
Department

Key Phrases of the Vision Statement of the Department

Centre of
Excellence

Wider
recognition

Rapid

innovation.

Learning-centered environment 3 2

Research and Discovery 2 2

Social Responsibility 1 2 1

MAPPING OF KEY PHRASES PEOS WITH KEY PHRASES OF DEPARTMENTS MISSION
STATEMENT

 (PEO Vs Department Mission)

Key Phrases of PEO Statements

Key Phrases of the Mission of the Department

Learning-centered
environment

Research and
Discovery

Social
Responsibility

 Skillful engineers 3 2

 Innovative, Creative, and
Sophisticated Technologies 3 1

Pioneering Ideas 2 2

POORNIMA COLLEGE OF ENGINEERING, JAIPUR

DEPARTMENT OF COMPUTER ENGINEERING

 MAPPING OF KEY PHRASES OF PSO WITH KEY PHRASES OF DEPARTMENTS MISSION

STATEMENT

 (PSO Vs Department Mission)

Key Phrases of PSO Statement

Key Phrases of the Mission Department

Learning-centred
environment

Research and
Discovery

Social
Responsibility

Technical Knowledge 3 2

Standards, Ethic, Tools, Challenges
Societal Problems 1 2 2

Entrepreneur, Lifelong Learning and
Higher Studies. 2

MAPPING OF KEY PHRASES OF PEO WITH KEY PHRASES OF PO

 (PEO Vs PO)

 Key Phrases of PO Statement

Key Phrases of PEO
Statement

Engine
ering

knowle
dge:

Pro
ble
m

anal
ysis:

Desig
n/

devel
opme
nt of
soluti
ons:

Cond
uct

investi
gation

s of
compl

ex
proble

ms:

Mo
der
n

tool
usa
ge:

The
engi
nee
r

and
soci
ety:

Envir
onmen
t and
sustai
nabilit

y:

Et
hic
s:

Indi
vidu

al
and
team
wor
k:

Com
muni
catio

n:

Project
manage

ment
and

finance
:

Life-
long
learn
ing:

Skillful engineers 3 3 3 3 2 1 1 2 2 1 2

Innovative, Creative,
and Sophisticated
Technologies

 3 2 2 1 1 1

Pioneering Ideas 2 1 1 2 2 1 1 2 1 2

POORNIMA COLLEGE OF ENGINEERING, JAIPUR
DEPARTMENT OF COMPUTER ENGINEERING

MAPPING OF KEY PHRASES OF PSO WITH KEY PHRASES PEO

(PSO Vs PEO)

Key Phrases of the PEO
Department

Key Phrases of the PSO Department

Technical
Knowledge

Standards, Ethic, Tools,
Challenges Societal

Problems

Entrepreneur, Lifelong
Learning and Higher

Studies.

Skillful engineers 3 2 2

Innovative, Creative, and
Sophisticated Technologies

2 2 2

Pioneering Ideas 1 2

POORNIMA COLLEGE OF ENGINEERING, JAIPUR
DEPARTMENT OF COMPUTER ENGINEERING

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

SYLLABUS

POORNIMA COLLEGE OF ENGINEERING, JAIPUR
DEPARTMENT OF COMPUTER ENGINEERING

Campus: Poornima College of Engineering Year/Section: 3rd Date: 18 Sept 2021

Course: B.Tech. Semester/ Section – 5B

Name of Faculty: Mr. Manish Choubisa Name of Subject: Operating

System

Code: 5CS4-03

ABC Analysis (RGB method)

Unit

No.

A

(Hard Topics)

B

(Topics with average

hardness level)

C

(Easy to understand

topics)

Preparedness

for ‘A’ topics

I

Semaphores, wait and signal

procedures, process

scheduling and

Algorithms, critical

sections, threads,

multithreading

Processor management:

inter process

communication, mutual

exclusion,

Structure and

Operations; processes

and files

Revision of the
topic

II

Paging, page table structure,

demand paging, page

replacement policies

Contiguous memory

allocation, virtual

memory

Thrashing,

segmentation, case

study

Revision &
taking test

III

Deadlock, deadlock

detection, deadlock

avoidance, deadlock

Prevention algorithms, disk

scheduling algorithms and

policies

Shared resources,

resource allocation and

scheduling, resource

graph models

Devices and their

characteristics, device

drivers,

Device handling

Revision of the
topic

IV

Directory structure, user

Authentication

Access methods and

matrices, file security

File concept, types and

structures, cases studies

Revision with

the students

V

UNIX and Linux operating
systems as case studies

Time OS and case
Studies of Mobile OS

-

Power point

Presentation &

Revision

POORNIMA COLLEGE OF ENGINEERING, JAIPUR
DEPARTMENT OF COMPUTER ENGINEERING

COURSE BLOWN UP

Campus: Poornima College of Engineering Year/Section: 3rd Date: 18 Sept 2021

Course: B.Tech. Semester/ Section – 5B

Name of Faculty: Mr. Manish Choubisa Name of Subject: Operating System Code: 5CS4-03

SNo.

TOPIC AS PER SYLLABUS

BLOWN UP TOPICS (up to 10 Times Syllabus)

1. Zero Lecture Objective, scope and outcome of the course.

2.

Introduction of Operating

systems and Processor

management

Structure and operations; processes and files inter process

communication, mutual exclusion, semaphores, wait and

signal procedures, process scheduling and algorithms, critical

sections, threads, multithreading

3.

Memory management

Contiguous memory allocation, virtual memory,

Paging, page table structure, demand paging, page

replacement policies, thrashing, segmentation, case study

4.

Deadlock and Device

management

Shared resources, resource allocation and scheduling,

Resource graph models, deadlock detection, deadlock

avoidance, deadlock Prevention algorithms devices and their

characteristics, device drivers, Device handling, disk

scheduling algorithms and policies

5.

File management

File concept, types and structures, directory structure,

Cases studies, access methods and matrices, file security, user

Authentication

6. UNIX and Linux operating

systems as case studies

Time OS and case Studies of Mobile OS

Date: 20/9/2021

S. No.
Lect.
No

Points to cover CO/LO Proposed Date Actual Date
Ref.Book/J
ournal with

1 L0
Zero Lecture: Introduction to the subject, Objective,
scope and outcome of the course, Text, Reference
Books

CO1 20/9/21 22/9/21

2 L1
Unit 1: Introduction and History of Operating
systems: Operating system Structure

CO1 22/9/21 23/9/21 T1: 3-12

3 L2 Operating System operations; CO1 23/9/21 27/9/21 T1:20

4 L3 processes and files, Process State CO1 27/9/21 30/9/21 T123

5 L4
Processor management: inter process communication,
Shared Memory, Message Passing

CO1 29/9/21 10-04-2021
T1: 101-
128

6 L5 Critical Section, Critical section problem CO1 30/9/21 10-06-2021

7 L6
mutual exclusion, Methods: disable interrupts, lock
veriable, strict alternation, Peterson solutions

CO1 10-04-2021 10-07-2021

8 L7
semaphores, wait and signal procedures, Binary
Semaphore, Counting Semaphore, Priority inversion

CO1 10-06-2021 10-11-2021

9 L8 process scheduling and algorithms,FCFS, CO1 10-07-2021 13/10/21

10 L9 SJF Algo, Priority Scheduling, Round robin Algo CO1 10-11-2021 14/10/21

11 L10 critical sections, threads, multithreading CO1 13/10/21 18/10/21

12 L11
Unit 2: Memory management: Introducton,
contiguous memory allocation,

CO2 14/10/21 20/10/21
T1: 315-

342
13 L12 virtual memory, paging, CO2 18/10/21 21/10/21 T1:328
14 L13 page table structure, demand paging, CO2 20/10/21 25/10/21 T1:337
15 L14 page replacement policies, Basic page replacement CO2 21/10/21 27/10/21

16 L15 FIFO page replace ment,optimal page replacement CO2 25/10/21 28/10/21

17 L16 LRU page replacement CO2 27/10/21 29/10/21

18 L17 thrashing, segmentation, case study CO2 28/10/21 29/10/21 T1:386
19 L18 Class Test/Assignment 29/10/21

20 L19
Unit-3: Deadlock: Deadlock introduction, Deadlock
characterization,

CO3 11-08-2021 11-10-2021

21 L20 Shared resources,resource allocation and scheduling CO3 11-10-2021 18/11/21

22 L21
deadlock detection-Single instanceof each resource
type,deadlock avoidance-resourceallcation
graph algorithms,

CO3 18/11/21 22/11/21

23 L22
The Ostrich Algorithm, Deadlock avoidance- Banker's
Algorithms

CO3 22/11/21 24/11/21

24 L23 deadlock prevention algorithms CO3 24/11/21 25/11/21

25 L24 Device management: devices and their characteristics, CO3 25/11/21 25/11/21

26 L25 device drivers, device handling CO3 29/11/21 29/11/21

27 L26 disk scheduling algorithms and policies CO3 12-01-2021 12-01-2021

28 L27
Unit-4: File management: file concept, types and
structures,

CO4 12-02-2021 12-02-2021

29 L28
directory structures- one level, two level,
hierarchical/tree, acyclic graph

CO4 12-06-2021 12-02-2021

30 L29 cases studies, access methods and matrices, CO4 12-08-2021 12-06-2021

31 L30 file security, user authentication CO4 12-09-2021 12-08-2021

Program: B.Tech. Year/ Section –III Year /B

POORNIMA COLLEGE OF ENGINEERING, JAIPUR
DEPARTMENT OF COMPUTER ENGINEERING

COURSE PLAN
Campus: Poornima College of Engineering Class/Section: V- Sem B

Name of Faculty: Mr. Manish Choubisa Name of Subject:- Subject Code: 5CS4-03

T1: 183-
206

T1: 227-
244

T1:369-
382

T1: 283-
285

T1: 290-
304

T1:421-451

32 L31 File System Implementation CO4 13/12/21 12-09-2021

33 L32
Unit-5:UNIX and Linux operating systems as case
studies: Linux History, Design principle

CO5 15/12/21 13/12/21

34 L33
Kernel modules, process managent, memory
management

CO5 16/12/21 15/12/21

35 L34 File System, network strycture CO5 20/12/21 16/12/21

36 L35 Time OS CO5 22/12/21 20/12/21

37 L36 case studies of Mobile OS CO5 23/12/21 22/12/21

38 L37 Class Test/Assignment 24/12/21

39 L38 Revision 26/12/21 22/12/21

Study material
Textbook:
T1:
T2:

R1:
R2:
R3:

DM Dhamdhere: Operating Systems – A Concepts Based Approach, Tata McGraw Hill
Charles Crowly: Operating System A Design – Oriented Approach, Tata McGraw Hill.

Reference books:

 A. Silberschatz and Peter B Galvin: Operating System Principals, Wiley India Pvt. Ltd.
Tanenbaum: Modern Operating System, Prentice Hall.

T1: 801-
845

Achyut S Godbole: Operating Systems, Tata McGraw Hill

POORNIMA COLLEGE OF ENGINEERING, JAIPUR
DEPARTMENT OF COMPUTER ENGINEERING

Campus: Poornima College of Engineering Year/Section: 3rd Date: 18 Sept 2021

Course: B.Tech. Semester/ Section – 5B

Name of Faculty: Mr. Manish Choubisa

COURSE OUTCOME :

Name of Subject: Operating System Code: 5CS4-03

• 5CS4-03.1 (CO1)

Students will able to solve the problem based on basic concepts of operating system, deadlocks,

memory management and file structures.

• 5CS4-03.2 (CO2)

Students will be able to apply process management, deadlocks and memory management problems.

• 5CS4-03.3 (CO3)

Students will be able to analyze various security and user authentication techniques in file management
system.

• 5CS4-03.4 (CO4)

Students will be able to create case study (the relative matrix some functionality) of the Windows, IOS

and Linux and mobile OS.

CO-PO-PSO Mapping: Mapping Levels: 1- Low, 2- Moderate, 3-Strong

CO PO PSO

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

CO1 3 - - - - - - - - - - - 1 - 2

CO2 - - 3 - - - - - - - - - 1 - 2

CO3 - - - 3 - - - - - - - - 1 - 2

CO4 - - - - 3 - - - - - - - 1 - 2

CO-PO MAPPING JUSTIFICATION

3CS4-06

CO1

PO1

3

Since programming knowledge and fundamentals are required in operating

system, memory management, deadlock, mutual exclusion etc. hence CO1

is strongly mapped with PO1.

CO2 PO3 3
Since concepts of deadlock, file management, are identified, formulated

and analysis engineering hence CO2 mapped with PO3.

CO3

PO4

3

Real world problem that are complex in nature will be analyzed and

designed using various deadlock detection and prevention hence CO3 is

mapped PO4.

CO4 PO5 3 Evaluation of Unix and Linux operating system will be done hence CO4 is

 strongly mapped with PO5.

CO-PSO MAPPING JUSTIFICATION

3CS4-06

CO1
PSO1,

PSO3
1,2

Semaphores, process scheduling, critical section, paging can be provided

for that hence CO1 is mapped with PSO1 and PSO3.

CO2

PSO1,

PSO3

1,2

Thrashing, contiguous memory allocation and disk scheduling

algorithms are different but is possible so CO2 is mapped with PSO1 and

PSO3.

CO3
PSO1,

PSO3
1,2

Design and development of directory structure, file concept are possible

hence CO3 is mapped with PSO1 and PSO3.

CO4
PSO1,

PSO3
1,2

Case study of Unix and Linux operating system are possible so that CO4

is mapped with PSO1 and PSO3.

POORNIMA COLLEGE OF ENGINEERING, JAIPUR
DEPARTMENT OF COMPUTER ENGINEERING

MID SEMESTER EXAMS: CO ATTAINMENT LEVELS

Course Category Level 3 Level 2 Level 1

A

60 % of students getting

> 60% marks

50-60 % of students

getting > 60% marks

40-50 % of students

getting > 60% marks

END TERM RTU COMPONENT: CO ATTAINMENT LEVELS

Course Category Level 3 Level 2 Level 1

A

50 % of students getting

> 60% marks

40-50 % of students

getting > 60% marks

30-40 % of students

getting > 60% marks

CO ATTAINMENT LEVELS FOR THEORY OF COMPUTATION

S. No. Course Type
Attainment

Level=1

Attainment

Level=2

Attainment

Level=3

1

Theory Courses

Mid Semester Exams

40-50 % of students

getting > 60%

marks

50-60 % of students

getting > 60% marks

60 % of students

getting > 60%

marks

2
Theory Courses

University Exam

30-40 % of students

getting > 60%

marks

40-50 % of students

getting > 60% marks

50 % of students

getting > 60%

marks

3

Assignments/Unit Test
40-50 % of students

getting > 60%

marks

50-60 % of students

getting > 60% marks

60 % of students

getting > 60%

marks

CO WISE ASSESSMENT ACTIVITIES (AS MENTIONED IN SESSION PLAN)

 Activities

CO Class Test Assignment Mid 1 Mid 2

CO1
Yes Yes Yes Yes

CO2 Yes Yes Yes Yes

CO3 Yes Yes Yes Yes

CO4 Yes Yes Yes Yes

POORNIMA COLLEGE OF ENGINEERING, JAIPUR
DEPARTMENT OF COMPUTER ENGINEERING

PO/PSO MAPPING AND TARGETS

CO PO Avg. PSO

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO

Targets
PSO1 PSO2 PSO3

CO1 3 - - - - - - - - - - - 3 1 - 2

CO2 - - 3 - - - - - - - - - 3 1 - 2

CO3 - - - 3 - - - - - - - - 3 1 - 2

CO4 - - - - 3 - - - - - - - 3 1 - 2

ACTIVITY WISE ASSESSMENT TOOLS

S.No.

Activity

Assessment Method

Tools

Weightage

Marks

Recommendation

1. Mid Term 1 Direct Marks 50 For CO1,2,3,4

2. Class Test Direct Marks 40 For CO1,2,3,4

3. Assignment Direct Marks 20 For CO1,2,3,4,

4. Mid Term 2 Direct Marks 50 For CO1,2,3,4

Note that for every rubrics you need to decide assessment criteria,

range of marks or weightage – above values are indicative

Minha Escola

Timetable generated:01-Nov-21 aSc Timetables

III YEAR
V-B

5CS4-03-OS CF-04

IV YEAR VII-C

7CS4-22-CS Lab AF-8A

 VII-C2

IV YEAR VII-C

7CS4-22-CS Lab AF-7A

 VII-C2

IV YEAR VII-C

7CS4-22-CS Lab AF-8A

 VII-C1

II YEAR
III-B

3CS7-30-INDUSTRIAL
TRAINING

AF-04

III YEAR
V-A

NSP CF-03

III YEAR
V-B

5CS4-03-OS CF-04

IV YEAR VII-C

7CS4-22-CS Lab AF-8A

 VII-C1

IV YEAR
VII-A

7CS7- PROJECT AF-1C

 VII-A2

II YEAR
III-A

3CS7-30-INDUSTRIAL
TRAINING

AF-03

III YEAR
V-B

5CS4-03-OS CF-04

Mo

Tu

We

Th

Fr

Sa

1
8:30 - 9:30

2
9:30 - 10:30

3
10:30 - 11:30

LUNCH
11:30 - 12:10

4
12:10 - 13:10

5
13:10 - 14:10

6
14:10 - 15:10

7
15:10 - 16:00

Teacher Mr.Manish Choubisa

POORNIMA COLLEGE OF ENGINEERING, JAIPUR
DEPARTMENT OF COMPUTER ENGINEERING

Zero Lecture Session: 2021-22 (Odd Sem)

Name of Faculty: Mr. Manish Choubisa Branch: Computer Engineering

1) Name of Subject with Code: Operating System (5CS4-03)

2) Self-Introduction:

a) Name: Mr. Manish Choubisa

b) Qualification: BE (CSE), M Tech (IC)

c) Designation: Assistant Professor

d) Research Area: Image Processing, Computer Network

e) E-mail Id: manish.choubisa@poornima.org

f) Other details:

• More than 10 years of teaching experience.

• Around 10 Papers in National, International journals and Conferences

3) Introduction of Students: III year V Semester (Computer Engineering)

a) Identifying and keeping records of students based on meritorious/weak in academics.

4) Instructional Language: - 100% English

5) Introduction to subject: An operating system acts as an intermediary between the user of a computer and computer

hardware. The purpose of an operating system is to provide an environment in which a user can execute programs

conveniently and efficiently.

An operating system is a software that manages computer hardware. The hardware must provide appropriate

mechanisms to ensure the correct operation of the computer system and to prevent user programs from interfering

with the proper operation of the system.

Objective:

The objective of this course is

• To understand the services provided by and the design of an operating system.

• To understand the structure and organization of the file system.

• To understand what a process is and how processes are synchronized and scheduled.

• To understand different approaches to memory management.

• Students should be able to use system calls for managing processes, memory and the file system.

• Students should understand the data structures and algorithms used to implement an OS.

6) Syllabus of Rajasthan Technical University, Kota

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus

III Year-V Semester: B.Tech. Computer Science and Engineering

5CS4-03: Operating System

Credit: 3 Max. Marks: 150(IA:30, ETE:120)

 3L+0T+0P End Term Exam: 3 Hours

Unit-1 Introduction: Objective, scope and outcome of the course.

 Introduction and History of Operating systems: Structure and operations; processes and

files Processor management: inter process communication, mutual exclusion, semaphores, wait

and signal procedures, process scheduling and algorithms, critical sections, threads,

multithreading
Unit-2 Memory management: contiguous memory allocation, virtual memory, paging, page table

structure, demand paging, page replacement policies, thrashing, segmentation, case study
Unit-3 Deadlock: Shared resources, resource allocation and scheduling, resource graph models,

deadlock detection, deadlock avoidance, deadlock prevention algorithms

Device management: devices and their characteristics, device drivers,device handling, disk

scheduling algorithms and policies
Unit-4 File management: file concept, types and structures, directory structure, cases studies, access

methods and matrices, file security, user authentication
Unit-5 UNIX and Linux operating systems as case studies; Time OS and case studies of Mobile OS

7) Books/ Website/Journals & Handbooks/ Association & Institution

S.

N.
Title of Book Authors Publisher

Text Books

T1 Operating System Principals, A. Silberschatz and Peter B Galvin Wiley India Pvt. Ltd.

T2 :Modern Operating System, Tanenbaum Prentice Hall.

Reference Books

R1 Operating Systems, Achyut S Godbole Tata McGraw Hill.

R2 Operating Systems – A Concepts Based Approach, DM Dhamdhere: Tata McGraw Hill.

R3 Operating System A Design – Oriented Approach, Charles Crowly Tata McGraw Hill.

Websites related to subject

1 https://archive.nptel.ac.in/courses/106/105/106105214/

2 https://mrcet.com/downloads/digital_notes/CSE/III%20Year/OPERATING%20SYSTEMS%20DIGI

TAL%20%20NOTES-18.pdf

8) Syllabus Deployment: -

a). Total no of Lectures: - 39

Unit 1: 11 lecture

Unit 2: 8 lecture

Unit 3: 8 lecture

Unit 4: 5 lecture

 Unit 5: 6 lecture

b) Special Activities (To be approved by HOD, Dean & Campus Director & must be mentioned in

deployment):

• Open Book Test- Once in a semester

• Quiz (100% Technical)- One in a semester

• Special Lectures (SPL)- 10% of total no. of lectures including following

i.Few PPT Lecture

• Revision classes:- 1 to 3 turn at the end of semester (Before II Mid Term Exam)

• Solving Important Question Bank- 1 Turn before I & II Mid Term Exam (each) - Total Two turn.

c) Lecture schedule per week:

i). University scheme (L+T+P) = 3L+0T+0P

ii). PGC scheme (L+T+P) = 4L+0T+0P

d) Introduction & Conclusion: Each subject, unit and topic shall start with introduction & close with

conclusion.

e) Time Distribution in lecture class: - Number of chapters is beginning with objective and end of

course/chapter/lecture with summary and quiz (Time allotted: 60 min.)

• First 5 min. should be utilized for paying attention towards students who were absent for last lecture

or continuously absent for many days + taking attendance by calling the names of the students and

also sharing any new/relevant information.

• Actual lecture delivery should be of 45 minutes

• Last 5 min. should be utilized by recapping of the topic. Providing brief introduction of the coming up

lecture and suggesting portion to read.

• After completion of any Unit/Chapter a short quiz should be organized

• During lecture student should be encouraged to ask the question.

7) University Examination systems: -

Sr.

No.
Name of the exam

Max.

Marks

passing

marks
Nature of paper

Syllabus

Coverage
Conducted by

1. I Mid Term Exam 30 10
Theory +

Numerical
60% PCE

2. II Mid Term Exam 30 10
Theory +

Numerical
40% PCE

3.
University

(End)Term exam
120 48

Theory +

Numerical
100% RTU

Place: Jaipur Mr. Manish Choubisa

 Assistant Professor

Page 1 of 2

POORNIMA COLLEGE OF ENGINEERING, JAIPUR
III B.TECH. (V Sem.) Roll No. __________________

FIRST MID TERM EXAMINATION 2021-22
Code: 5CS4-03 Category: PCC Subject Name–Operating System

(BRANCH – COMPUTER ENGINEERING)
 Course Credit: 03

Max. Time: 2 hrs. Max. Marks: 60
NOTE:- Read the guidelines given with each part carefully.

Course Outcomes (CO):
At the end of the course the student should be able to:
CO1: Understand the basic concepts of Operating System and solve problem based on process scheduling and inter process

communication.

CO2: Evaluate and identify various memory management techniques in term of paging and segmentation.

CO3: Apply the methods for deadlock handling in operating system and device management policies for disk scheduling.

 PART - A: (All questions are compulsory) Max. Marks (10)
 Marks CO BL PO
Q.1 What are the main functions of Memory Management module in Operating

System? 2
CO1 BL2 PO1

Q.2 What do you mean by process? Explain some of the differences between

process and program?
2 CO2 BL2 PO12

Q.3 State various differences between Multiprogramming and Multitasking?

Explain with the help of any example with respect to the operating system?
2 C01 BL1 PO1

Q.4 Explain some of the shortcomings of Round Robin Scheduling algorithm?

Explain with the help of any example?
2 CO1 BL3 PO1

Q.5 Explain the term Convoy effect, Starvation and Aging with respect to CPU

Scheduling Algorithm?
2 C02 BL2 PO12

 PART - B: (Attempt 4 questions out of 6) Max. Marks (20)
Q.6 What do you mean by the state of a Process? Explain the Process State

Diagram in detail?
5 CO2 BL3 PO12

Q.7 What do you mean by term “Semaphores”? How it can be useful to achieve

mutual exclusion? Explain the counting Semaphore with its pseudo code with
the help of any example?

5 CO2 BL4 PO12

Q.8 What is Mutual exclusion? Discuss some of the approaches to achieve the

mutual exclusion? Explain some of the approaches with the help of any
example?

5 CO1 BL4 PO1

Q.9 What do you mean by Contiguous Memory Allocation? What are the different

techniques used in Contiguous Memory Allocation? Explain in detail.
5 CO2 BL3 PO12

Q.10 What is Deadlock in Operating System? List four necessary condition for

occurrence of the Deadlock in the system?
5 CO3 BL2 PO3

Q.11 Explain the Process Control Block (PCB) in Process Management? How it

can be useful to manage all process related activities? Explain in detail?
5 CO1 BL2 PO1

 PART - C: (Attempt 3 questions out of 4) Max. Marks (30)

Page 2 of 2

Q.12 Consider the following set of processes-

Process CPU Burst Time Arrival Time

P1 25 0

P2 10 5

P3 5 10

P4 15 10

(A) Create a Gantt chart for the Non-Preemptive and Preemptive SJF

Scheduling Algorithm?

(B) Find the Waiting Time and Turnaround Time of each Process by

considering the Non-Preemptive and Preemptive SJF Scheduling

Algorithm?

10 CO1 BL5 PO1

Q.13 Consider the following page reference string:

1, 2, 3, 4, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 3, 6.
How many page faults would occur for the Optimal Page Replacement
algorithm? Consider the number of frames in physical memory is: 4. Find the
Fault rate for the algorithm?

10 CO2 BL5 PO12

Q.14 What is Paging? How a logical address is converted in to physical address in
Paging? Explain Address Translation Architecture diagram used in Paging
with the help of any example?

10 CO2 BL3 PO12

Q.
15

Consider the following page reference string:
4, 5, 1, 2, 3, 5, 4, 3, 7, 1, 2, 3, 4, 1, 2.
How many page faults would occur for the LRU Page Replacement
algorithm? Consider the number of frames in physical memory is: 3. Find the
Fault rate for the algorithm?

10 CO2 BL5 PO12

BL – Bloom’s Taxonomy Levels (1- Remembering, 2- Understanding, 3 – Applying, 4 –
Analyzing, 5 – Evaluating, 6 - Creating)
CO – Course Outcomes; PO – Program Outcomes

Bloom's Taxonomy Levels

BL1 BL2 BL3 BL4 BL5

0
5
10
15
20
25
30
35

CO1 CO2 CO3

COURSE OUTCOME WISE MARKS
DISTRIBUTION

Page 1 of 2

POORNIMA COLLEGE OF ENGINEERING, JAIPUR
III B.TECH. (V Sem. Section-A) Date 19/11/2021

Assignment-I
Code: 5CS4-03 Category: PCC Subject Name–Operating System

(BRANCH – COMPUTER ENGINEERING)
 Max. Marks: 20
Note: Attempt any eight questions.
 Don’t copy the assignment. It leads to reduction of marks.
 Last date to submit the assignment is:31-11-21.

Q.1 CO1 PO1 What do you mean by term “Semaphores”? How it can be useful to achieve
mutual exclusion? Explain the counting Semaphore with its pseudo code with
the help of any example?

5

Q.2 CO1 PO1 Explain the term Convoy effect, Starvation and Aging with respect to CPU

Scheduling Algorithm? Explain some of the shortcomings of Round Robin
Scheduling algorithm? Explain with the help of any example?

5

Q.3 CO2 PO12 What do you mean by the state of a Process? Explain the Process State Diagram

in detail? Explain the Process Control Block (PCB) in Process Management?
How it can be useful to manage all process related activities? Explain in detail?

5

Q.4 CO1 PO1 What do you mean by the term OS? What are the different services provided by

the operating system to its users? Explain different type of OS.
5

Q.5 CO1 PO1 What do you mean by Context switching? Also explain the difference between

Multiprogramming and Multitasking Operating System?
5

Q.6 CO2 PO12 Consider the following set of processes-

Process CPU Burst Time Arrival Time

P1 6 2

P2 2 5

P3 8 1

P4 3 0

P5 4 4

(A) Create a Gantt chart for the Non-Preemptive and Preemptive SJF

Scheduling Algorithm?

Find the Waiting Time and Turnaround Time of each Process by considering the
Non-Preemptive and Preemptive SJF Scheduling Algorithm?

5

Q.7 CO2 PO12 Consider the following set of processes-

Process CPU Burst Time Arrival Time

P1 15 0

P2 14 3

P3 22 7

P4 09 9

P5 18 16

5

Page 2 of 2

(B) Create a Gantt chart for the Round Robin Scheduling Algorithm?

Find the Waiting Time and Turnaround Time of each Process by using the Round
Robin Scheduling Algorithm? Consider TQ=10.

Q.8 CO1 PO1 What is Mutual exclusion? Discuss some of the approaches to achieve the mutual

exclusion?

5

Q.9 CO1 PO1 What is IPC with respect to OS? What do you mean by race condition? How the

race condition will occur in Spooler Directory of a printer? Explain in detail.
5

Q.10 CO3 PO4 What is Belady’s an anomaly in page replacement algorithm? What are

disadvantages of FIFO and Optimal Page replacement algorithm?
5

Q.11 CO3 PO4 Consider the following page reference string:

4, 5, 1, 2, 3, 5, 4, 3, 7, 1, 2, 3, 4, 1, 2.
How many page faults would occur for the LRU Page Replacement algorithm?
Consider the number of frames in physical memory is: 3. Find the Fault rate for
the algorithm?

5

Page 1 of 2

POORNIMA COLLEGE OF ENGINEERING, JAIPUR
III B.TECH. (V Sem.) Roll No. __________________

SECOND MID TERM EXAMINATION 2021-22
Code: 5CS4-03 Category: PCC Subject Name–Operating System

(BRANCH – COMPUTER ENGINEERING)
 Course Credit: 03

Max. Time: 2 hrs. Max. Marks: 60
NOTE:- Read the guidelines given with each part carefully.

Course Outcomes (CO):
At the end of the course the student should be able to:
CO 1. Understand the basic concepts of Operating System and solve problem based on process scheduling and inter process
communication.
CO 2. Evaluate and identify various memory management techniques in term of paging and segmentation.
CO 3. Apply the methods for deadlock handling in operating system and device management policies for disk scheduling.
CO 4. Analyze various security and user authentication techniques in file management system
CO 5. Create case study (the relative matrix some functionality) of the RTOS, Linux and Mobile OS.

 PART - A: (All questions are compulsory) Max. Marks (10)
 Marks CO BL PO
Q.1 Define the term Disk scheduling? Give some of the names of disk scheduling algorithms? 2 CO3 BL2 PO3

Q.2 Explain the term “Safe State or Unsafe State” with the help of any example? 2 CO3 BL3 PO3

Q.3 Explain Device management? Why we need to install the device driver in the operating

system? Justify the specific reason for that.
2 C03 BL3 PO3

Q.4 What do you mean by term File and File Systems? What is the need of file system in an

operating system?
2 CO4 BL2 PO4

Q.5 What are the distinct operations performed by the operating systems on the file ? List

them all.
2 C04 BL2 PO4

 PART - B: (Attempt 4 questions out of 6) Max. Marks (20)
Q.6 Cite the different file allocation method? Explain some of merits and demerits of each file

allocation method in detail?
5 CO4 BL3 PO4

Q.7 How the deadlock is detected in the system? Explain some of the methods that are used to

recover the deadlock?
5 CO3 BL4 PO3

Q.8 Explain Free space management in File System? How the free space managed in the file

system? Explain different methods to handle free space?
5 CO4 BL2 PO4

Q.9 Discuss the Serial and Index sequential access methods for accessing a file in the system?

How they are different form the direct access.
5 CO4 BL3 PO4

Q.10 State some of the differences between Unix and Linux operating system? 5 CO5 BL3 PO2

Q.11 Suppose a disk drive has 200 tracks, numbered from 0 to 199. The read / write head at

track number 53. The queue with requests from I/O to blocks on tracks are as-

98 , 183, 37 , 122, 14, 124, 65, 67

The read write direction is upward from the current position. Find the total seek time
using the Scan Disk Scheduling algorithm.

5 CO3 BL5 PO3

 PART - C: (Attempt 3 questions out of 4) Max. Marks (30)
Q.12 How the operating system Handle the deadlock in the system? Explain deadlock

prevention method of handling deadlock in the system?

10 CO3 BL4 PO3

Q.13 Write a short note on a case study of the following topics: (Any Two).

(a) Unix

5+5 CO5 BL3 PO2

Page 2 of 2

(b) Linux

(c) RTOS

(d) Mobile OS.

Q.14 Consider the following snapshot of the system at time T0:

Process Allocation Maximum Available

R1 R2 R3 R1 R2 R3 R1 R2 R3

P0 1 2 1 2 5 1 2 2 1

P1 2 1 0 3 4 0

P2 1 1 2 5 3 4

P3 2 1 0 4 2 1

According to Banker’s algorithm answer the following:

(a). Show is the content of need Matrix?

(b). Suppose process p3 request (2,1,1) resources. Can this request be granted? If yes
,then find out the safe state of the system.

10 CO3 BL5 PO3

Q.15 Consider a disk queue with requests for I/O to blocks on cylinders 98, 183, 41, 122, 14,

124, 65, 67. The head is initially at cylinder number 53. The cylinders are numbered
from 0 to 199.

Find the total seek time and average disk service by using the SSTF and FCFS algorithm.

10 CO3 BL5 PO3

BL – Bloom’s Taxonomy Levels (1- Remembering, 2- Understanding, 3 – Applying, 4 –
Analyzing, 5 – Evaluating, 6 - Creating)
CO – Course Outcomes; PO – Program Outcomes

Bloom's Taxonomy Levels

BL1 BL2 BL3 BL4 BL5

0
5
10
15
20
25
30
35
40

CO3 CO4 CO5

COURSE OUTCOME WISE
MARKS DISTRIBUTION

Poornima College of Engineering, Jaipur

Department of Computer Engineering

Assignment-II
Sub: OPERATING SYSTEM (5CS 4-03)

Semester: V SEM-B

Date: 17/12/2021 Max. Marks: 20
*Last date of Submission: 23/12/2021

Q

No.
CO PO Marks Questions

Q1. CO 3 PO 3 4

By using the Banker’s Algorithm, consider a system with five

processes P0 through P4 and three resource types A, B and C.

resource type A has 10 instances, resource type B has 5 instances

and resource type C has 7 instances.

 a) What is the content of the Need matrix?

 b) Is the system in a safe state?

Q2. CO 3 PO 3 4

consider a disk with 200 tracks and the queue has random

requests from different processes in the order:

25, 58, 39, 18, 80, 165, 150, 38, 182

Initially arm is at 68. Find the Average Seek length using SSTF

and SCAN Algorithms.

Q3. CO 3 PO 3 4

Explain the following;

 a. Resource allocation graph

 b. Recovery from Deadlock

Q4. CO 4 PO 4 4 What are attributes of File? Explain

Q5. CO 5 PO 3 4
Describes the file authentication process in Linux operating

system

Summery Sheet

Name of faculty Manish Choubisa

Class- B. Tech – V SEM CS

Branch Computer Engineering

Course Code 5CS4-03

Course Name Operating System

Session 2021-22

COURSE OUTCOMES

After completion of this course, students should be able to:

CO1
Understand the basic concepts of Operating System and solve problem

based on process scheduling and inter process communication.

CO2 Evaluate and identify various memory management techniques in term of

paging and segmentation.

CO3

Apply the methods for deadlock handling in operating system and device

management policies for disk scheduling.

CO4 Analyse various security and user authentication techniques in file

management system

CO5 Create case study (the relative matrix some functionality) of the RTOS,

Linux and Mobile OS.

CO-PO/PSO MAPPING AND TARGETS

CO PO Avg. PSO

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12
CO

Target

s
PSO1 PSO2 PSO3

CO1 3 - - - - - - - - - - - 3 3 - 2

CO2 - - - - - - - - - - - 2 2 2 - -

CO3 - - 3 - - - - - - - - - 3 3 - 2

CO4 - - - 3 - - - - - - - - 3 2 2 -

CO5 - 3 - - - - - - - - - - 3 1 - 2

Level of course

Course Category Level 3 Level 2 Level 1

A 60% of students getting

>60% marks

50-60% of students

getting >60% marks

40-50% of students

getting >60% marks

ACTIVITY WISE ASSESSMENT TOOLS

Sr. No. Activity Assessment

Method

Tools Weightage

Marks

Recommendation

1. Assignment I Direct Marks 30 For CO1-CO3

2. Assignment II Direct Marks 30 For CO4-CO5

3. MidTerm1 Direct Marks 60 For CO1-CO3

4. MidTerm2 Direct Marks 60 For CO4-CO5

CO-GAP IDENTIFICATIONS

COs CO1 CO2 CO3 CO4 CO5

Target 3 2 3 3 3

Achieved 2.871 1.749 2.675 2.2807 2.4386

Gap 0.129 0.251 0.325 0.7193 0.5614

Overall COs wise Attainment

Activities Midterm-I Midterm-

II

RTU exam

Target 3 3 3.00 3

Achieved 2.53 2.79 2.71 2.83

Gap 0.47 0.21 0.29 0.17

0

0.5

1

1.5

2

2.5

3

3.5

CO1 CO2 CO3 CO4 CO5

CO-GAP IDENTIFICATIONS

Target Achieved Gap

POs and PSOs GAP IDENTIFICATION

Attainment of PO through CO(Class Test, OBT and Quiz) Component

5CS4-03 PO PSO
 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

Targets 3 3 3 3 2 2.2 2 2

Achieve
d

2.93 2.72 2.84 2.64 1.33 1.70 1.28 1.35

Gap 0.07 0.28 0.16 0.36 0.67 0.50 0.72 0.65

Attainment of PO through CO(MIDTERM-I) Component

5CS4-03 PO PSO

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

 Targets 3 3 3 3 2 2.2 2 2

Achieved 2.87 2.49 1.27 1.93 1.32

Gap 0.13 0.51 0.73 0.27 0.68

Attainment of PO through CO(MIDTERM-II) Component

5CS4-03 PO PSO

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

Targets 3 3 3 3 2 2.2 2 2

Achieved 2.87 2.44 2.68 2.28 1.27 1.65 0.97 1.30

Gap 0.13 0.56 0.32 0.72 0.73 0.55 1.03 0.70

Attainment of PO through CO(RTU) Component

5CS4-03 PO PSO

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

Targets 3 3 3 3 2 2.2 2 2

Achieve
d

2.81 2.81 2.81 2.81 1.69 1.86 1.69 1.69

Gap 0.19 0.19 0.19 0.19 0.31 0.34 0.31 0.31

Attainment & Gap of Overall PO Session 2021-22

Gaps Identified:

Describe what the reasons for gaps

are

1. Numerical part of scheduling are need

more practice

2. deadlock topic is hard to understand

Activities decided to bridge the gap

1. Extra class of scheduling topic example

of GATE questions for more clarification

2. Give case study of deadlock of various

OS

0

0.5

1

1.5

2

2.5

3

3.5

Activities Midterm-I Midterm-II RTU exam

Overall COs wise Attainment

Target Achieved Gap

5CS4-03 PO PSO
 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3

Targets 3 3 3 3 2 2.2 2 2

Achieved 2.81 2.76 2.79 2.72 1.36 1.37 1.18 1.19

Gap 0.19 0.24 0.21 0.28 0.64 0.83 0.82 0.81

Gaps Identified:

Describe what the reasons for gaps

are

1. Minor gap identify

2.

Activities decided to bridge the gap

1. Discuss assignment in class

2.

Gaps Identified:

Describe what the reasons for gaps

are
1. Numerical part CO achieved less

2.

Activities decided to bridge the gap

1. Extra class of scheduling topic example

of GATE questions for more clarification

2.

0

0.5

1

1.5

2

2.5

3

3.5

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10PO11PO12PSO1PSO2PSO3

Attainment of PO through CO(Class
Test, OBT and Quiz) Component

Targets Achieved Gap

0

0.5

1

1.5

2

2.5

3

3.5

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10PO11PO12PSO1PSO2PSO3

Attainment of PO through
CO(MIDTERM-I) Component

Targets Achieved Gap

0

0.5

1

1.5

2

2.5

3

3.5

Attainment of PO through
CO(MIDTERM-II) Component

Targets Achieved Gap

0

0.5

1

1.5

2

2.5

3

3.5

Attainment of PO through CO(RTU)
Component

Targets Achieved Gap

Gaps Identified:

Describe what the reasons for gaps

are

1. for PO2, some complex part of dead

lock algorithms are less to under stand by

students

2.

Activities decided to bridge the gap

1. Discuss deadlock with case study for

different operating systems.

2.

Gaps Identified:

Describe what the reasons for gaps

are
1. Minor gap identify

2. some gap in PSO regarding software

practices

Activities decided to bridge the gap

1.will Plan expert talk for next session

regarding advance development in OS

software

2.

Overall Comments:

• Minor gap identifies for Operating System course in PO1, PO2, PO3 and PO5.

0

0.5

1

1.5

2

2.5

3

3.5

Attainment & Gap of Overall PO
Session 2021-22

Targets Achieved Gap

Gaps Identified:

Describe what the reasons for gaps

are
1. Numerical part of scheduling are need

more practice

2. deadlock topic is hard to understand

Activities decided to bridge the gap

1. Extra class of scheduling topic example

of GATE questions for more clarification

2. Give case study of deadlock of various

OS

PoORNIMA
COLLEGE OF ENGINEERING

LECTURE NOTES
urse S ClassSection: Date: **** *****'*

aa ot auits. NAnih.. Cheubrsg Nauue of Subjevt: ..0.Ptqha.Itt:.S.CS-0

Date (Del.): ... Unit No./1Topic:.... ..Lect. No:.... *''****'* **

D INE: ti wittn brtie tiaking the ecture (P. write in bullet points the main twpics/concepts etc.. which

OeciinsJyJtm

Schedulnp
it Jchede

N RtitRELEINEQUESIONS:

Dnihm functi 0.
TFeofo o SinDeteul-Multilarkn, utipro

schedlaq QJed New MAiCei uej
le thread

ACQEStiONS (AFTER 20 MINUTES):

wheat

plCtin
sEhedteii

thui pe
Schedulir CPU aPiomty

NE OE THE DELIVERED LECTURE: lo be wvritten atter taking the lecture (EPl. write in bullet points about

kris uth hs ierturr. tevei ot understarting ot this tcture by stutents etc.)

Stltf Sheul d be Ieun fo KLAOwabot

yper of 0 CPU Scheclul

RSREC ES TextRet. Beuk wth Page No. and relevant internet Websites:

POORNIMA
COLLEGE OF ENGINEERING

LECTURE NOTES
eSE

N
hate (trep

emY ManALI E N a

eehaiq

Th a lun

Centiq tAOus A

Nhat t ir in 0
plaih tmadd

hats thalun oly it i ukeol.

OU7ONME OF VUME DELNEREDLCURE: to te written atter tak iny the levtue (1 write in huiilet pointa alhiit

students Rtt uNt this levturv. leved ot uadeestathne ot thi lecture by stufentx e

tteclet Should be leam abot tt Meony

an ntnt Peir teeniGw
Stud Suutd be leam cAad Demcd ftayirg
REEEREN ES: Tew Ret Biad th Page N and relevant tntetnet Websites

PoORNIMA
COLLEGE OF ENGINEERING

LECTURE NOTES
Campus:.C... Course:..C.S.E. Class/Section:.
Name of Faculty: Ma.nIs.h....baubs G Name of Subject: .2.

***' **
" ****

******** Date:... .*

Code: SCSu 03

Date (Prep.):..... Date (Del.):Unit No./Topic:..O........ .LECtLect. NO:

OBJECTIVE: To be written before taking the lecture (Pl. write in bullet points the main topics/concepts etc.. which

will be taught in this lecture)

DodlocC Premotim Avoidane
Resp4ce Eloc.qt chedul

Mttluol Hndup Deocltoc
DtVilo Mancaprea

INIPORTANT & RELEVANT QUESTIONS:

Deadlock advantasp dia duantapce

Met d Hmedtn DLadloc

DwIes d fhar chALceehxjstic)
FEED BACK QUESTIONS (AFTER 20 MINUTES):

Wha deadloclt Thuv chouufesiihs

O Epplu devIe_dÁn chaCeergti hc

doip
dk Scheclulins qlosaasth

OUTCOME OF THE DELIVERED LECTURE: To be written afier taking the lecture (Pl. write in bullet points about

students feedback on this lecture, level of understanding of this lecture by students etc.)

SudetShould bo len abocut 7h De dla
Doxite anuge meak l dple SChedulin

REFERENCES: Tex/Ref. Book with Page No. and relevant Internet Websites:

POORNIMA
COLLEGE OF ENGINEERING

LECTURE NOTES
Campus: P. Çourse:.C .
Name of Faculty:114%al.s.h.Chou1S 9

Class/Section: Date:

Name of Subject: .2.S.... Code:5 CL493
.. Unit No.Topic:.....Lect. No:

****** *'*

Date (Prep.):... .. Date (Del.): .

OBJECTIVE: To be written before taking the lecture (PI. write in bullet points the main topics/concepts etc. which

will be taught in this lecture)

ile MancemA
Ale Laaltpt,ype rutun

Sec y-
lg_Acuecs_m-ethed

IMPORTANT & RELEVANT QUESTIONS:

Deteil abod ho e mnae tneNE
oF e

fleSeus Seuusi
le Aceees mefwe

FEED BACK QUESTIONS (AFTER 20 MINUTES);

het i hle Syhm
2 EplCt pe
-3 plw dhtaal peO file AeLess

file 2

ewd

oUTCOME OF THE DELIVERED LECTURE: To be written atter taking the lecture (Pl. write in bullet points about

students' feedback on this lecture, level of understanding of this lecture by students ctc.)

Shelent should be leGun about fAlo
erepttype 0 Ale

Student should be MaAn abeut t nl ACUUs|
metwd.

REFERENCES: TexURef. Book with Page No. and relevant Internet Websites:

PoORNIMA
COLLEGE OF ENGINEERING

LECTURE NOTES
Campus: .PC... Course: .S.l.
Name of Faculty: Manu.h.Dut.Isq Name of Subject:s...

Class/Section: Date: ... ****"" ***********.

Code:SC.S 03 ***********

Date (Prep.): . .. Date (Del.):Unit No./Topic:...D... .. Lect. No: ...

OBJECTIVE: To be written before taking the lecturce (PI. write in bullet points the main topics/concepts etc.. which
will be taught in this lecture)

Cae uy m

Mobly 6s

IMPORTANT & RELEVANT QUESTIONS:

Un inu Aeluamtagt Pisaduow e
)Mobile l_O hertu NS.

RTO detul

FEED BACK QUESTIONS (AFTER 20 MINUTES):

wht Ts uni diffRene buun

CpLeun dfro Lesu 0O.J

oUTCOME OF THE DELIVERED LECTURE: To be written atter taking the lecture (Pl. write in bulet points about
students' feedback on this lecture, evel of understanding of this lecture by students etc.)

olent sheuld be leun abouf

inue
Stueleol sheuld be leKn ebeed m cbile 0

PrqaMM-
RTop REFERENCES: TextRef. Book with Page No. and relevant Internet Websites:

▪ File concept, File Attributes

▪ File types and structures,

▪ Directory structure,

▪ File Access methods and matrices,

▪ File security,

▪ User authentication

▪ Cases studies

▪ A file is a named collection of related information that is recorded on secondary

storage such as magnetic disks, magnetic tapes and optical disks.

▪ File is a sequence of bits, bytes, lines or records whose meaning is defined by the

files creator and user.

▪ Name – only information kept in human-readable form

▪ Identifier – unique tag (number) identifies file within file system

▪ Type – needed for systems that support different types

▪ Location – pointer to file location on device

▪ Size – current file size

▪ Protection – controls who can do reading, writing, executing

▪ Time, date, and user identification – data for protection, security, and usage
monitoring

▪ Information about files are kept in the directory structure, which is maintained on the
disk

▪ Many variations, including extended file attributes such as file checksum

▪ Information kept in the directory structure

▪ File is an abstract data type, To define a file properly, we need to consider the
operations that can be performed on files.

Six basic operations:

1. Create

2. Write – at write pointer location

3. Read – at read pointer location

4. Reposition within file - seek

5. Delete: delete a file

6. Truncate: erase the contents of a file but keep its attributes

▪ Open(Fi) – search the directory structure on disk for entry Fi, and move the content of
entry to memory

▪ Close (Fi) – move the content of entry Fi in memory to directory structure on disk

▪ Several pieces of data are needed to manage open files:

▪ Open-file table: tracks open files

▪ File pointer: pointer to last read/write location, per process that has the file open

▪ File-open count: counter of number of times a file is open – to allow removal of data from

open-file table when last processes closes it

▪ Disk location of the file: cache of data access information

▪ Access rights: per-process access mode information

▪ File locks allow one process to lock a file and prevent other processes from gaining access to it

▪ File locks are useful for files that are shared by several processes—for example, a system log file
that can be accessed and modified by a number of processes in the system.

▪ Provided by some operating systems and file systems
▪ Similar to reader-writer locks

▪ Shared lock similar to reader lock – several processes can acquire concurrently

▪ Exclusive lock similar to writer lock

▪ Mediates access to a file

▪ Mandatory or advisory:

▪ Mandatory – If a lock is mandatory, then once a process acquires an exclusive lock, the operating
system will prevent any other process from accessing the locked file
▪ Advisory – processes can find status of locks and decide what to do

▪ A common technique for implementing file types is to include the type as part of
the file name.

▪ The name is split into two parts—

▪ name and

▪ Extension

▪ This two parts usually separated by a period

▪ The system uses the extension to indicate the type of the file and the type of
operations that can be done on that file.

▪ File types also can be used to indicate the internal structure of the file

▪ A File Structure should be according to a required format that the operating system
can understand.

▪ A file has a certain defined structure according to its type.

▪ A text file is a sequence of characters organized into lines.

▪ A source file is a sequence of procedures and functions.

▪ An object file is a sequence of bytes organized into blocks that are understandable
by the machine.

▪ When operating system defines different file structures, it also contains the code to
support these file structure. Unix, MS-DOS support minimum number of file
structure.

▪ A directory is a container that is used to contain folders and file. It organizes files
and folders into a hierarchical manner.

▪ The directory can be viewed as a symbol table that translates file names into their
directory entries

▪ Search for a file.

▪ Create a file

▪ Delete a file

▪ List a directory

▪ Rename a file

▪ Traverse the file system

▪ There are several logical structures of a directory, these are given below.

1. Single-level directory

2. Two-level directory

3. Tree-structured directory

4. Acyclic graph directory

5. General graph directory structure

▪ Single level directory is simplest directory structure.

▪ In it all files are contained in same directory which make it easy to support and
understand.

▪ A single level directory has a significant limitation, however, when the number of
files increases or when the system has more than one user.

▪ Since all the files are in the same directory, they must have the unique name .

▪ if two users call their dataset test, then the unique name rule violated.

▪ Advantages:

▪ Since it is a single directory, so its implementation is very easy.

▪ If the files are smaller in size, searching will become faster.

▪ The operations like file creation, searching, deletion, updating are very easy in
such a directory structure.

▪ Disadvantages:

▪ There may chance of name collision because two files can not have the same name.

▪ Searching will become time taking if the directory is large.

▪ In this can not group the same type of files together.

▪ As we have seen, a single level directory often leads to confusion of files names
among different users.

▪ the solution to this problem is to create a separate directory for each user.

▪ In the two-level directory structure, each user has there own user files directory
(UFD).

▪ The UFDs has similar structures, but each lists only the files of a single user.

▪ System’s master file directory (MFD) is searches whenever a new user ids logged in.

▪ The MFD is indexed by username or account number, and each entry points to the
UFD for that user.

▪ Advantages:

▪ We can give full path like /User-name/directory-name/.

▪ Different users can have same directory as well as file name.

▪ Searching of files become more easy due to path name and user-grouping.

▪ Disadvantages:

▪ A user is not allowed to share files with other users.

▪ Still it not very scalable, two files of the same type cannot be grouped together in
the same user.

▪ Once we have seen a two-level directory as a tree of height 2, the natural
generalization is to extend the directory structure to a tree of arbitrary height.

▪ This generalization allows the user to create there own subdirectories and to
organize on their files accordingly.

▪ A tree structure is the most common directory structure. The tree has a root
directory, and every file in the system have a unique path.

▪ A directory (or subdirectory) contains a set of files or subdirectories.

▪ A directory is simply another file, but it is treated in a special way. All directories
have the same internal format.

▪ One bit in each directory entry defines the entry as a file (0) or as a subdirectory
(1).

▪ Special system calls are used to create and delete directories.

▪ Advantages:

▪ Very generalize, since full path name can be given.

▪ Very scalable, the probability of name collision is less.

▪ Searching becomes very easy, we can use both absolute path as well as relative.

▪ Disadvantages:

▪ Every file does not fit into the hierarchical model, files may be saved into multiple
directories.

▪ We can not share files.

▪ It is inefficient, because accessing a file may go under multiple directories.

▪ An acyclic graph is a graph with no cycle and allows to share subdirectories and
files.

▪ The same file or subdirectories may be in two different directories.

▪ It is a natural generalization of the tree-structured directory. It is used in the
situation like when two programmers are working on a joint project and they need
to access files.

▪ The associated files are stored in a subdirectory, separating them from other
projects and files of other programmers, since they are working on a joint project
so they want the subdirectories to be into their own directories.

▪ The common subdirectories should be shared. So here we use Acyclic directories.

▪ It is the point to note that shared file is not the same as copy file . If any
programmer makes some changes in the subdirectory it will reflect in both
subdirectories.

▪ Advantages:

▪ We can share files.

▪ Searching is easy due to different-different paths.

▪ Disadvantages:

▪ We share the files via linking, in case of deleting it may create the problem,

▪ If the link is softlink then after deleting the file we left with a dangling pointer.

▪ In case of hardlink, to delete a file we have to delete all the reference associated
with it.

▪ In general graph directory structure, cycles are allowed within a directory structure
where multiple directories can be derived from more than one parent directory.

▪ The main problem with this kind of directory structure is to calculate total size or
space that has been taken by the files and directories.

▪ If cycles are allowed to exist in the directory, we likewise want to avoid searching
any component twice, for reasons of correctness as well as performance.

▪ A poorly designed algorithm might result in an infinite loop continually searching
through the cycle and never terminating

▪ Advantages:

▪ It allows cycles.

▪ It is more flexible than other directories structure.

▪ Disadvantages:

▪ It is more costly than others.

▪ It needs garbage collection.

▪ The way that files are accessed and read into memory is determined by Access

methods.

▪ Usually a single access method is supported by systems while there are OS's that

support multiple access methods.

▪ There are three ways to access a file into a computer system:

1. Sequential-Access,

2. Direct Access,

3. Index sequential Method.

▪ Data is accessed one record right after another is an order.

▪ Read command cause a pointer to be moved ahead by one.

▪ Write command allocate space for the record and move the pointer to the new End
Of File.

▪ Such a method is reasonable for tape.

▪ This method is useful for disks.

▪ The file is viewed as a numbered sequence of blocks or records.

▪ There are no restrictions on which blocks are read/written, it can be dobe in any
order.

▪ User now says "read n" rather than "read next".

▪ "n" is a number relative to the beginning of file, not relative to an absolute physical
disk location.

▪ It is the other method of accessing a file which is built on the top of the sequential
access method.

▪ These methods construct an index for the file.

▪ The index, like an index in the back of a book, contains the pointer to the various
blocks.

▪ To find a record in the file, we first search the index and then by the help of pointer
we access the file directly.

▪ It is built on top of Sequential access.

▪ It uses an Index to control the pointer while accessing files.

▪ To keep safe the data of the user from the improper access to the system.

▪ Protection can be provided in number of ways. For a single laptop system, we might

provide protection by locking the computer in a desk drawer or file cabinet.

▪ For multi-user systems, different mechanisms are used for the protection.

▪ The files which have direct access of the any user have the need of protection.

▪ The files which are not accessible to other users doesn’t require any kind of protection.

▪ The mechanism of the protection provide the facility of the controlled access by just

limiting the types of access to the file

▪ Types of Access :

▪ Read –
Reading from a file.

▪ Write –
Writing or rewriting the file.

▪ Execute –
Loading the file and after loading the execution process starts.

▪ Append –
Writing the new information to the already existing file, editing must be end at the end of the
existing file.

▪ Delete –
Deleting the file which is of no use and using its space for the another data.

▪ List –
List the name and attributes of the file.

▪ Operations like renaming, editing the existing file, copying; these can also be controlled.

▪ Access Control :

▪ There are different methods used by different users to access any file.

▪ The general way of protection is to associate identity-dependent access with all the
files and directories an list called access-control list (ACL) which specify the names
of the users and the types of access associate with each of the user.

▪ The main problem with the access list is their length. If we want to allow everyone
to read a file, we must list all the users with the read access.

▪ The access to any system is also controlled by the password. If the use of password

are is random and it is changed often, this may be result in limit the effective access

to a file.

The use of passwords has a few disadvantages:

▪ The number of passwords are very large so it is difficult to remember the large

passwords.

▪ If one password is used for all the files, then once it is discovered, all files are

accessible; protection is on all-or-none basis.

5CS4-03:
OPERATING SYSTEM

Er. Manish Choubisa

Assistant Professor

Department of Computer Engineering

Memory

Management

Er. Manish Choubisa

CONTENTS

• Memory management:

• contiguous memory allocation,

• virtual memory,

• Paging

• page table structure

• demand paging

• page replacement policies

• Thrashing

• Segmentation

• case study

Er. Manish Choubisa

MEMORY
MANAGEMENT

Contents: Unit-2

• Memory management:

• Contiguous memory
allocation,

• Virtual memory,

• Paging

• Page table structure

• demand paging

• Page replacement
policies

• FIFO page replacement

• Optimal page replacement

• LRU page replacement

• Thrashing

• Segmentation

• Case study
Er. Manish Choubisa

MEMORY
MANAGEMENT

• Memory management is the functionality of an
operating system which handles or manages primary
memory and moves processes back and forth between
main memory and disk during execution.

• Memory management keeps track of each and every
memory location, regardless of either it is allocated to
some process or it is free.

• It checks how much memory is to be allocated to
processes.

• It decides which process will get memory at what time.

• It tracks whenever some memory gets freed or
unallocated and correspondingly it updates the status.

Er. Manish Choubisa

SWAPPING

• Swapping is a mechanism in which a process can be
swapped temporarily out of main memory (or move) to
secondary storage (disk) and make that memory
available to other processes.

• At some later time, the system swaps back the process
from the secondary storage to main memory.

• Though performance is usually affected by swapping
process but it helps in running multiple and big
processes in parallel and that's the reason Swapping is
also known as a technique for memory compaction.

Er. Manish Choubisa

SCHEMATIC VIEW OF
SWAPPING

Er. Manish Choubisa

MEMORY ALLOCATION

• Memory allocation is a process by which computer
programs are assigned memory or space.

• Main memory usually has two partitions −

1. Low Memory - Operating system resides in this type of

memory.

2. High Memory- User processes are held in high memory.

Er. Manish Choubisa

FRAGMENTATION

• In computer storage, fragmentation is a phenomenon in which storage

space is used inefficiently, reducing capacity or performance and often

both.

❖As processes are loaded and removed from memory, the free memory

space is broken into little pieces.

❖It happens after sometimes that processes cannot be allocated to memory

blocks considering their small size and memory blocks remains unused.

❖This problem is known as Fragmentation.

Er. Manish Choubisa

INTERNAL
FRAGMENTATION

• When a program is allocated to a memory block, if that
program is lesser than this memory block and remaining
space goes wasted, this situation is called internal
fragmentation.

• Generally, internal fragmentation memory partition is
static or fixed.

Er. Manish Choubisa

EXTERNAL
FRAGMENTATION

• Total memory space is enough to satisfy a request or to
reside a process in it, but it is not contiguous, so it
cannot be used.

• External fragmentation arises when free memory is
separated into small blocks and is interspersed by
allocated memory.

Er. Manish Choubisa

PARTITION ALLOCATION

• Memory is divided into different blocks or partitions.

• Each process is allocated according to the
requirement.

• Partition allocation is an ideal method to avoid internal
fragmentation.

Er. Manish Choubisa

PARTITION ALGORITHM

• First Fit: In this type fit, the partition is allocated, which is

the first sufficient block from the beginning of the main

memory.

• Best Fit: It allocates the process to the partition that is

the first smallest partition among the free partitions.

• Worst Fit: It allocates the process to the partition, which

is the largest sufficient freely available partition in the

main memory.

Er. Manish Choubisa

MEMORY ALLOCATION

1. Contiguous
• Fixed Partition

• Variable Partition

2. Non-Contiguous
• Paging

• Multilevel paging

• Segmentation

• Segmented with paging

Er. Manish Choubisa

CONTIGUOUS
MEMORY ALLOCATION

Contents: Unit-2

• Memory management:

• Contiguous memory
allocation

• Virtual memory,

• Paging

• Page table structure

• demand paging

• Page replacement
policies

• FIFO page replacement

• Optimal page replacement

• LRU page replacement

• Thrashing

• Segmentation

• Case study
Er. Manish Choubisa

CONTIGUOUS MEMORY
ALLOCATION

• Each process occupies a contiguous block of physical
memory

• It Allocates a single contiguous section of memory to a
process or a file

• It allows to store the process only in a contiguous
fashion.

• Thus, entire process has to be stored as a single entity at
one place inside the memory.

Er. Manish Choubisa

CONTIGUOUS MEMORY
ALLOCATION (CONT…)

• To allocate the contiguous space to user processes, the

memory can be divide either in the fixed-sized partition

or in the variable-sized partition.

Er. Manish Choubisa

STATIC PARTITIONING

• Static partitioning is a fixed size partitioning scheme.

• In this technique, main memory is pre-divided into fixed
size partitions.

• The size of each partition is fixed and can not be
changed.

• Each partition is allowed to store only one process.

• Internal Fragmentation occurs only in static partitioning.

Er. Manish Choubisa

STATIC PARTITIONING

• Example:

Under fixed size partitioning scheme, a memory of size 10 KB
may be divided into fixed size partitions as-

• These partitions are allocated to the processes as they arrive.

• The partition allocated to the arrived process depends on
the algorithm followed.

Er. Manish Choubisa

ADVANTAGES OF STATIC
PARTITIONING

• It is simple and easy to implement.

• It supports multiprogramming since multiple processes

can be stored inside the main memory.

• Only one memory access is required which reduces the

access time.

Er. Manish Choubisa

DISADVANTAGES OF
STATIC PARTITIONING

• It suffers from both internal fragmentation and external

fragmentation.

• It utilizes memory inefficiently.

• The degree of multiprogramming is limited equal to

number of partitions.

• There is a limitation on the size of process since

processes with size greater than the size of largest

partition can’t be stored and executed.

Er. Manish Choubisa

DYNAMIC PARTITIONING

• Dynamic partitioning is a variable size partitioning
scheme.

• It performs the allocation dynamically.

• When a process arrives, a partition of size equal to the
size of process is created.

• Then, that partition is allocated to the process.

Er. Manish Choubisa

ADVANTAGES OF
DYNAMIC PARTITIONING

• It does not suffer from internal fragmentation.

• Degree of multiprogramming is dynamic.

• There is no limitation on the size of processes.

Er. Manish Choubisa

DISADVANTAGES OF
DYNAMIC PARTITIONING

• It suffers from external fragmentation.

• Allocation and deallocation of memory is complex.

Er. Manish Choubisa

TRANSLATING LOGICAL
ADDRESS INTO PHYSICAL

ADDRESS
• Memory Protection:

• CPU always generates a logical address.

• A physical address is needed to access the main
memory.

• The translation scheme uses two registers:

• Relocation Register

• Limit Register

• Relocation Register stores the base address or starting
address of the process in the main memory.

• Limit Register stores the size or length of the process.

Er. Manish Choubisa

Er. Manish Choubisa

Practice question1

• (Contiguous memory allocation)

Consider six memory partitions of size 200 KB, 400 KB, 600
KB, 500 KB, 300 KB and 250 KB. These partitions need to
be allocated to four processes of sizes 357 KB, 210 KB, 468
KB and 491 KB in that order.

Perform the allocation of processes using-

• First Fit Algorithm

• Best Fit Algorithm

• Worst Fit Algorithm

Er. Manish Choubisa

Practice question 2
• (Contiguous memory allocation)

Consider the following heap (figure) in which blank regions are
not in use and hatched regions are in use-

The sequence of requests for blocks of size 300, 25, 125, 50 can be
satisfied if we use-

a) Either first fit or best fit policy (any one)

b) First fit but not best fit policy

c) Best fit but not first fit policy

d) None of the above

Er. Manish Choubisa

Non-Contiguous

Memory Allocation

Er. Manish Choubisa

NON-CONTIGUOUS
MEMORY ALLOCATION-

• It allows to store parts of a single process in a non-
contiguous fashion.

• Thus, different parts of the same process can be stored
at different places in the main memory.

Er. Manish Choubisa

VIRTUAL MEMORY

Contents: Unit-2

• Memory management:

• Contiguous memory
allocation

• Virtual memory

• Paging

• Page table structure

• demand paging

• Page replacement
policies

• FIFO page replacement

• Optimal page replacement

• LRU page replacement

• Thrashing

• Segmentation

• Case study
Er. Manish Choubisa

VIRTUAL MEMORY

• A computer can address more memory than the
amount physically installed on the system.

• This extra memory is actually called virtual memory

• it is a section of a hard disk that's set up to emulate the
computer's RAM.

• Virtual memory is commonly implemented by demand
paging.

• Demand segmentation can also be used to provide
virtual memory.

Er. Manish Choubisa

Er. Manish Choubisa

PAGING

• Paging is a fixed size partitioning scheme.

• In paging, secondary memory and main memory are
divided into equal fixed size partitions.

• The partitions of secondary memory are called as
pages.

• The partitions of main memory are called as frames.

• Each process is divided into parts where size of each
part is same as page size.

• The size of the last part may be less than the page size.

• The pages of process are stored in the frames of main
memory depending upon their availability.

Er. Manish Choubisa

Er. Manish Choubisa

TRANSLATING LOGICAL
ADDRESS INTO PHYSICAL

ADDRESS
• CPU always generates a logical address.

• A physical address is needed to access the main
memory.

• Every address generated by the CPU is divided into two
parts: a page number (p) and a page offset (d).

Er. Manish Choubisa

Er. Manish Choubisa

• The page number is used as an index into a page table.

• The page table contains the base address of each
page in physical memory.

• This base address is combined with the page offset to
define the physical memory address that is sent to the
memory unit.

• If the size of the logical address space is 2^m, and a
page size is 2^n bytes, then the high-order m− n bits of
a logical address designate the page number, and the
n low-order bits designate the page offset

Er. Manish Choubisa

Er. Manish Choubisa

ADVANTAGES OF
PAGING

• It allows to store parts of a single process in a non-

contiguous fashion.

• It solves the problem of external fragmentation.

Er. Manish Choubisa

DISADVANTAGES OF
PAGING

• It suffers from internal fragmentation.

• There is an overhead of maintaining a page table for

each process.

• The time taken to fetch the instruction increases since

now two memory accesses are required.

Er. Manish Choubisa

PAGE TABLE
STRUCTURE

Contents: Unit-2

• Memory management:

• Contiguous memory
allocation

• Virtual memory

• Paging

• Page table structure

• demand paging

• Page replacement
policies

• FIFO page replacement

• Optimal page replacement

• LRU page replacement

• Thrashing

• Segmentation

• Case study
Er. Manish Choubisa

PAGE TABLE STRUCTURE

• Page table is a data structure.

• It maps the page number referenced by the CPU to
the frame number where that page is stored.

• Page table is stored in the main memory.

• Number of entries in a page table = Number of pages
in which the process is divided.

• Page Table Base Register (PTBR) contains the base
address of page table.

• Each process has its own independent page table.

Er. Manish Choubisa

PAGE TABLE ENTRY

• A page table entry contains several information about
the page.

• The information contained in the page table entry
varies from operating system to operating system.

• The most important information in a page table entry is
frame number.

Er. Manish Choubisa

1. Frame Number-

• Frame number specifies the frame where the page is
stored in the main memory.

• The number of bits in frame number depends on the
number of frames in the main memory.

2. Present / Absent Bit-

• This bit is also sometimes called as valid / invalid bit.

• This bit specifies whether that page is present in the
main memory or not.

• If the page is not present in the main memory, then this
bit is set to 0 otherwise set to 1.

Er. Manish Choubisa

3. Protection Bit-

• This bit is also sometimes called as “Read / Write bit“.

• This bit is concerned with the page protection.

• It specifies the permission to perform read and write
operation on the page.

• If only read operation is allowed to be performed and
no writing is allowed, then this bit is set to 0.

• If both read and write operation are allowed to be
performed, then this bit is set to 1.

4. Reference Bit-

• Reference bit specifies whether that page has been
referenced in the last clock cycle or not.

• If the page has been referenced recently, then this bit
is set to 1 otherwise set to 0.

Er. Manish Choubisa

5. Caching Enabled / Disabled-

• This bit enables or disables the caching of page.

• Whenever freshness in the data is required, then
caching is disabled using this bit.

• If caching of the page is disabled, then this bit is set to 1
otherwise set to 0.

6. Dirty Bit-

• This bit is also sometimes called as “Modified bit“.

• This bit specifies whether that page has been modified
or not.

• If the page has been modified, then this bit is set to 1
otherwise set to 0.

Er. Manish Choubisa

PAGE FAULT

• When a page referenced by the CPU is not found in

the main memory, it is called as a page fault.

• When a page fault occurs, the required page has to be

fetched from the secondary memory into the main

memory.

Er. Manish Choubisa

PAGE FAULT
(CONT..)

Er. Manish Choubisa

DEMAND PAGING

Contents: Unit-2

• Memory management:

• Contiguous memory
allocation

• Virtual memory

• Paging

• Page table structure

• demand paging

• Page replacement
policies

• FIFO page replacement

• Optimal page replacement

• LRU page replacement

• Thrashing

• Segmentation

• Case study
Er. Manish Choubisa

DEMAND PAGING
• Demand paging is a technique used in virtual memory systems where

the pages are brought in the main memory only when required or
demanded by the CPU.

• Hence, it is also named as lazy swapper because the swapping of
pages is done only when required by the CPU

• Advantages

• It increases the degree of multiprogramming as many processes can be
present in the main memory at the same time.

• There is a more efficient use of memory as processes having size more
than the size of the main memory can also be executed using this
mechanism because we are not loading the whole page at a time.

• Disadvantages

• The amount of processor overhead and the number of tables used for
handling the page faults is greater than in simple page management
techniques.

Er. Manish Choubisa

PAGE REPLACEMENT
POLICIES

Contents: Unit-2

• Memory management:

• Contiguous memory
allocation

• Virtual memory

• Paging

• Page table structure

• demand paging

• Page replacement
policies

• FIFO page replacement

• Optimal page replacement

• LRU page replacement

• Thrashing

• Segmentation

• Case study
Er. Manish Choubisa

PAGE REPLACEMENT
ALGORITHMS

• Page replacement is a process of swapping out an
existing page from the frame of a main memory and
replacing it with the required page.

• Page replacement is required when-

✓All the frames of main memory are already occupied.

✓Thus, a page has to be replaced to create a room for
the required page.

• Page replacement algorithms help to decide which
page must be swapped out from the main memory to
create a room for the incoming page

Er. Manish Choubisa

PAGE REPLACEMENT
ALGORITHMS

1. FIFO Page Replacement Algorithm

2. Optimal Page Replacement Algorithm

3. LRU Page Replacement Algorithm

A good page replacement algorithm is one that minimizes the number of page faults

Er. Manish Choubisa

1. FIFO PAGE REPLACEMENT
ALGORITHM

• As the name suggests, this algorithm works on the
principle of “First in First out“.

• It replaces the oldest page that has been present in the
main memory for the longest time.

• It is implemented by keeping track of all the pages in a
queue

Er. Manish Choubisa

BELADY’S ANOMALY

• Belady’s anomaly proves that it is possible to have

more page faults when increasing the number of page

frames while using the First in First Out (FIFO) page

replacement algorithm.

• For example, if we consider reference string 3, 2, 1, 0, 3,

2, 4, 3, 2, 1, 0, 4 and 3 slots, we get 9 total page faults,

but if we increase slots to 4, we get 10 page faults.

Er. Manish Choubisa

2. OPTIMAL PAGE
REPLACEMENT ALGORITHM-

• This algorithm replaces the page that will not be
referred by the CPU in future for the longest time.

• It is practically impossible to implement this algorithm.

• This is because the pages that will not be used in future
for the longest time can not be predicted.

• However, it is the best known algorithm and gives the
least number of page faults.

• Hence, it is used as a performance measure criterion
for other algorithms.

Er. Manish Choubisa

3. LRU PAGE REPLACEMENT
ALGORITHM

• As the name suggests, this algorithm works on the
principle of “Least Recently Used“.

• It replaces the page that has not been referred by the
CPU for the longest time.

Er. Manish Choubisa

THRASHING

Contents: Unit-2

• Memory management:

• Contiguous memory
allocation

• Virtual memory

• Paging

• Page table structure

• demand paging

• Page replacement
policies

• FIFO page replacement

• Optimal page replacement

• LRU page replacement

• Thrashing

• Segmentation

• Case study
Er. Manish Choubisa

THRASHING

• If this page fault and then
swapping happening very
frequently at higher rate,
then operating system has to
spend more time to swap
these pages.

• This state is called thrashing.

• Because of this, CPU
utilization is going to be
reduced.

Er. Manish Choubisa

SEGMENTATION

Contents: Unit-2

• Memory management:

• Contiguous memory
allocation

• Virtual memory

• Paging

• Page table structure

• demand paging

• Page replacement
policies

• FIFO page replacement

• Optimal page replacement

• LRU page replacement

• Thrashing

• Segmentation

• Case study
Er. Manish Choubisa

SEGMENTATION

• Like Paging, Segmentation is another non-contiguous memory allocation

technique.

• In segmentation, process is not divided blindly into fixed size pages.

• Rather, the process is divided into modules for better visualization.

• Segmentation is a variable size partitioning scheme.

• In segmentation, secondary memory and main memory are divided into

partitions of unequal size.

• The size of partitions depend on the length of modules.

• The partitions of secondary memory are called as segments.

Er. Manish Choubisa

SEGMENT TABLE

• Segment table is a table that stores the information
about each segment of the process.

• It has two columns.

• First column stores the size or length of the segment.

• Second column stores the base address or starting
address of the segment in the main memory.

• Segment table is stored as a separate segment in the
main memory.

• Segment table base register (STBR) stores the base
address of the segment table.

Er. Manish Choubisa

EXAMPLE

• Limit indicates the length or size of the
segment.

• Base indicates the base address or
starting address of the segment in the
main memory.

Er. Manish Choubisa

ADVANTAGES OF
SEGMENTATION

• It allows to divide the program into modules which
provides better visualization.

• Segment table consumes less space as compared to
Page Table in paging.

• It solves the problem of internal fragmentation.

Er. Manish Choubisa

DISADVANTAGES OF
SEGMENTATION

• The time taken to fetch the instruction increases since

now two memory accesses are required.

• Segments of unequal size are not suited for swapping.

• It suffers from external fragmentation as the free space

gets broken down into smaller pieces with the

processes being loaded and removed from the main

memory.

Er. Manish Choubisa

CASE STUDY

Intel 32 and 64-bit
Architectures

Er. Manish Choubisa

IMPORTANT POINT

• Physical Address Space = Size of main memory

• Size of main memory = Total number of frames x Page
size

• Frame size = Page size

• If number of frames in main memory = 2X, then number
of bits in frame number = X bits

• If Page size = 2X Bytes, then number of bits in page
offset = X bits

• If size of main memory = 2X Bytes, then number of bits in
physical address = X bits

Er. Manish Choubisa

IMPORTANT POINT

• Virtual Address Space = Size of process

• Number of pages the process is divided = Process size /
Page size

• If process size = 2X bytes, then number of bits in virtual
address space = X bits

• Size of page table = Number of entries in page table x
Page table entry size

• Number of entries in pages table = Number of pages
the process is divided

• Page table entry size = Number of bits in frame number
+ Number of bits used for optional fields if any

Er. Manish Choubisa

Er. Manish Choubisa

Er. Manish Choubisa

5CS4-03:

Operating System

Er. Manish Choubisa

Assistant Professor

Department of Computer Engineering

Poornima College of Engineering, Jaipur

UNIT-3

Deadlocks

Content

 Deadlock:

 Shared resources,

 resource allocation and scheduling,

 resource graph models,

 Methods for Handling Deadlocks

1. Deadlock prevention

2. Deadlock avoidance

3. Deadlock detection and recovery

4. Deadlock Ignorance

 Device management:

 devices and their characteristics,

 device drivers,

 device handling,

 disk scheduling algorithms and policies

System Model

 System consists of resources

 Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi instances.

 Each process utilizes a resource as follows:

 request

 use

 release

When do deadlocks happen?

 Suppose

 Process 1 holds resource A and
requests resource B

 Process 2 holds B and requests A

 Both can be blocked, with
neither able to proceed

 Deadlocks occur when …

 Processes are granted exclusive
access to devices or software
constructs (resources)

 Each deadlocked process needs
a resource held by another
deadlocked process

A

B

B

A

Process 1 Process 2

DEADLOCK!

What is a deadlock?

 Formal definition:

“A set of processes is deadlocked if each process in the set is waiting for an

event that only another process in the set can cause.”

 Usually, the event is release of a currently held resource

 In deadlock, none of the processes can

 Run

 Release resources

 Be awakened

Deadlock Characterization

 Four conditions for deadlock:

 Mutual exclusion

 Each resource is assigned to at most one process

 Hold and wait

 A process holding resources can request more resources

 No preemption

 Previously granted resources cannot be forcibly taken away

 Circular wait

 There must be a circular chain of 2 or more processes where each is waiting for a

resource held by the next member of the chain

Resource-Allocation Graph

 A set of vertices V and a set of edges E.

 V is partitioned into two types:

 P = {P1, P2, …, Pn}, the set consisting of all the processes in the system

 R = {R1, R2, …, Rm}, the set consisting of all resource types in the system

 request edge – directed edge Pi → Rj

 assignment edge – directed edge Rj → Pi

Resource allocation graphs

 Resource allocation modeled by

directed graphs

 Example 1:

 Resource R assigned to process A

 Example 2:

 Process B is requesting / waiting for

resource S

 Example 3:

 Process C holds T, waiting for U

 Process D holds U, waiting for T

 C and D are in deadlock!

R

A

S

B

U

T

DC

Graph With A deadlock

Graph With A Cycle But No Deadlock

Basic Facts

 If graph contains no cycles  no

deadlock

 If graph contains a cycle 

 if only one instance per resource type, then

deadlock

 if several instances per resource type,

possibility of deadlock

Methods for Handling Deadlocks

1. Deadlock prevention

2. Deadlock avoidance

3. Deadlock detection and recovery

4. Deadlock Ignorance

1. Deadlock prevention

 This strategy involves designing a system that violates one of the four necessary conditions

required for the occurrence of deadlock.

 This ensures that the system remains free from the deadlock.

 The various conditions of deadlock occurrence may be violated as-

1. Mutual Exclusion-

To violate this condition, all the system resources must be such that they can be used in a shareable mode.

•In a system, there are always some resources which are mutually exclusive by nature.

•So, this condition can not be violated.

Deadlock prevention

2. Hold and Wait-

This condition can be violated in the following ways-

Approach-01:

In this approach,
•A process has to first request for all the resources it requires for execution.
•Once it has acquired all the resources, only then it can start its execution.
•This approach ensures that the process does not hold some resources and wait for other
resources.

Drawbacks-

The drawbacks of this approach are-
•It is less efficient.
•It is not implementable since it is not possible to predict in advance which resources will be
required during execution.

Deadlock prevention

Approach-02:

In this approach,
•A process is allowed to acquire the resources it desires at the current moment.
•After acquiring the resources, it start its execution.
•Now before making any new request, it has to compulsorily release all the resources that
it holds currently.
•This approach is efficient and implementable.

Approach-03:

In this approach,
•A timer is set after the process acquires any resource.
•After the timer expires, a process has to compulsorily release the resource.

Deadlock prevention

3. No Preemption-

•This condition can by violated by forceful preemption.

•Consider a process is holding some resources and request other resources that can not be

immediately allocated to it.

•Then, by forcefully preempting the currently held resources, the condition can be violated.

Deadlock prevention

4. Circular Wait-

•This condition can be violated by not allowing the processes to wait for resources in a cyclic
manner.
•To violate this condition, the following approach is followed-

Approach-

•A natural number is assigned to every resource.
•Each process is allowed to request for the resources either in only increasing or only
decreasing order of the resource number.
•In case increasing order is followed, if a process requires a lesser number resource, then it
must release all the resources having larger number and vice versa.
•This approach is the most practical approach and implementable.
•However, this approach may cause starvation but will never lead to deadlock.

Deadlock Prevention

 Mutual Exclusion – not required for sharable resources

(e.g., read-only files); must hold for non-sharable

resources

 Hold and Wait – must guarantee that whenever a

process requests a resource, it does not hold any other

resources

 Require process to request and be allocated all its

resources before it begins execution, or allow process to

request resources only when the process has none

allocated to it.

 Low resource utilization; starvation possible

Deadlock Prevention (Cont.)

 No Preemption –

 If a process that is holding some resources requests another

resource that cannot be immediately allocated to it, then all

resources currently being held are released

 Preempted resources are added to the list of resources for

which the process is waiting

 Process will be restarted only when it can regain its old

resources, as well as the new ones that it is requesting

 Circular Wait – impose a total ordering of all resource

types, and require that each process requests resources in

an increasing order of enumeration

Deadlock Avoidance

 Simplest and most useful model requires that each process declare

the maximum number of resources of each type that it may need

 The deadlock-avoidance algorithm dynamically examines the

resource-allocation state to ensure that there can never be a

circular-wait condition

 Resource-allocation state is defined by the number of available and

allocated resources, and the maximum demands of the processes

Requires that the system has some additional a priori information

available

Safe State

 When a process requests an available resource, system must

decide if immediate allocation leaves the system in a safe state

 System is in safe state if there exists a sequence <P1, P2, …, Pn>

of ALL the processes in the systems such that for each Pi, the

resources that Pi can still request can be satisfied by currently

available resources + resources held by all the Pj, with j < I

 That is:

 If Pi resource needs are not immediately available, then Pi can wait

until all Pj have finished

 When Pj is finished, Pi can obtain needed resources, execute, return

allocated resources, and terminate

 When Pi terminates, Pi +1 can obtain its needed resources, and so on

Safe, Unsafe, Deadlock State

Basic Facts

 If a system is in safe state  no deadlocks

 If a system is in unsafe state  possibility of deadlock

 Avoidance  ensure that a system will never enter an

unsafe state.

Deadlock Avoidance Algorithms

1. Resource-allocation graph Algorithm:

for Single instance of a resource type

2. Banker’s algorithm :

for Multiple instances of a resource type

1. Resource-Allocation Graph Algorithm

 Claim edge Pi → Rj indicated that process Pj may request resource

Rj in future; represented by a dashed line

 Claim edge converts to request edge when a process requests a

resource

 Request edge converted to an assignment edge when the resource

is allocated to the process

 When a resource is released by a process, assignment edge

reconverts to a claim edge

 Resources must be claimed a priori in the system

Resource-Allocation Graph

Unsafe State In Resource-Allocation Graph

Resource-Allocation Graph Algorithm

 Suppose that process Pi requests a resource Rj

 The request can be granted only if converting

the request edge to an assignment edge does

not result in the formation of a cycle in the

resource allocation graph

2. Banker’s Algorithm

 Multiple instances

 Each process must a priori claim maximum use

 When a process requests a resource it may have to

wait

 When a process gets all its resources it must return

them in a finite amount of time

Data Structures for the Banker’s Algorithm

 Available: Vector of length m. If available [j] = k, there are k

instances of resource type Rj available

 Max: n x m matrix. If Max [i,j] = k, then process Pi may request

at most k instances of resource type Rj

 Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently

allocated k instances of Rj

 Need: n x m matrix. If Need[i,j] = k, then Pi may need k more

instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Example of Banker’s Algorithm

 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

 Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Example (Cont.)

 The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

 The system is in a safe state since the sequence < P1, P3, P4, P2, P0>

satisfies safety criteria

Example: P1 Request (1,0,2)

 Check that Request  Available (that is, (1,0,2)  (3,3,2)  true

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

 Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>
satisfies safety requirement

 Can request for (3,3,0) by P4 be granted?

 Can request for (0,2,0) by P0 be granted?

Deadlock detection and recovery

 Allow system to enter deadlock state

 The OS periodically checks if there is any existing deadlock

in the system and take measures to remove the deadlocks.

 Detection algorithm

 Recovery scheme

Deadlock Detection

 There are 2 different cases in case of Deadlock detection –

1. If resource has single Instance

 Wait- For graph

2. If resources have multiple instances

 Deadlock Detection Algorithm

1. Single Instance of Each Resource Type

 Maintain wait-for graph

 Nodes are processes

 Pi → Pj if Pi is waiting for Pj

 Periodically invoke an algorithm that searches for a cycle in

the graph. If there is a cycle, there exists a deadlock

 An algorithm to detect a cycle in a graph requires an order of

n2 operations, where n is the number of vertices in the graph

Wait for Graph:

 If Resources has Single Instance a wait-for graph is made.

 A Wait-for graph vertex denotes process. The edge implies one process

waiting for other Process to release resource.

 A deadlock is detected if one wait-for graph contains a cycle.

 Wait-for graph is made by looking at resource allocation graph.

 An edge between P1 to P2 exists if P1 needs some resource which P2 has.

 To detect cycle, system maintains the wait state of graph and periodically

invoke an algorithm to detect cycle in graph.

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

2. Several Instances of a Resource Type

 By multiple instance we mean one resource may allow 2 or more accesses

concurrently, in such cases Wait for graph is not applicable.

 In this, a new algorithm is used. It’s a bit similar to Banker’s Algorithm, but

Bankers Algorithm is different.

 It too uses 3 data structures –

 Available

 Vector of length m

 Indicates number of available resources of each type.

 Allocation

 Matrix of size n*m

 A[i,j] indicates the number of j th resource type allocated to i th process.

 Request

 Matrix of size n*m

 Indicates request of each process.

 Request[i,j] tells number of instance Pi process is request of jth resource type.

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively

Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi  0, then

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti  Work

If no such i exists, go to step 4

Detection Algorithm (Cont.)

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1  i  n, then the
system is in deadlock state. Moreover, if Finish[i] ==
false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations to detect

whether the system is in deadlocked state

Example of Detection Algorithm

 Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances)

 Snapshot at time T0:

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

 Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

Example (Cont.)

 P2 requests an additional instance of type C

Request

A B C

P0 0 0 0

P1 2 0 2

P2 0 0 1

P3 1 0 0

P4 0 0 2

 State of system?

 Can reclaim resources held by process P0, but insufficient resources to

fulfill other processes; requests

 Deadlock exists, consisting of processes P1, P2, P3, and P4

Detection-Algorithm Usage

 When, and how often, to invoke depends on:

 How often a deadlock is likely to occur?

 How many processes will need to be rolled back?

 one for each disjoint cycle

 If detection algorithm is invoked arbitrarily, there may

be many cycles in the resource graph and so we would

not be able to tell which of the many deadlocked

processes “caused” the deadlock.

Deadlock Recovery

 Deadlock can be recovered by:

 Kill the Process – One way is to kill all the process in deadlock or the second

way kill the process one by one, and check after each if still deadlock exists

and do the same till the deadlock is removed.

 Preemption – The resources that are allocated to the processes involved in

deadlock are taken away(preempted) and are transferred to other processes.

In this way, system may recover from deadlock as we may change system

state.

 Rollback – The OS maintains a database of all different states of system, a

state when the system is not in deadlock is called safe state. A rollback to

previous ‘n’ number of safe states in iterations can help in the recover.

Recovery from Deadlock: Process Termination

 Abort all deadlocked processes

 Abort one process at a time until the deadlock cycle is eliminated

 In which order should we choose to abort?

1. Priority of the process

2. How long process has computed, and how much longer to completion

3. Resources the process has used

4. Resources process needs to complete

5. How many processes will need to be terminated

6. Is process interactive or batch?

Recovery from Deadlock: Resource Preemption

 Selecting a victim – minimize cost

 Rollback – return to some safe state, restart process for that

state

 Starvation – same process may always be picked as victim,

include number of rollback in cost factor

Deadlock Ignorance

 This strategy involves ignoring the concept of deadlock and assuming as if it

does not exist.

 This strategy helps to avoid the extra overhead of handling deadlock.

 Windows and Linux use this strategy and it is the most widely used method.

 It is also called as Ostrich approach.

Content

 Device management:

 devices and their characteristics,

 device drivers,

 device handling,

 disk scheduling algorithms and policies

Device Management Functions

 Track status of each device (such as tape drives, disk drives, printers,

plotters, and terminals).

 Use preset policies to determine which process will get a device and for how

long.

 Allocate the devices.

 Deallocate the devices at 2 levels:

 At process level when I/O command has been executed & device is temporarily

released

 At job level when job is finished & device is permanently released.

Types of Devices

 Three categories:

1.Dedicated,

2.Shared, and

3.Virtual

Dedicated Devices

 Assigned to only one job at a time and serve that job for entire time it’s

active.

 E.g., tape drives, printers, and plotters, demand this

kind of allocation scheme, because it would be

awkward to share.

 Disadvantage -- must be allocated to a single user for duration of a job’s

execution.

 Can be quite inefficient, especially when device isn’t

used 100 % of time.

Shared Devices

 Assigned to several processes.

 E.g., disk pack (or other direct access storage device)

can be shared by several processes at same time by

interleaving their requests.

 Interleaving must be carefully controlled by Device Manager.

 All conflicts must be resolved based on predetermined policies to decide

which request will be handled first.

Virtual Devices

 Combination of dedicated devices that have been transformed into shared

devices.

 E.g, printers are converted into sharable devices through a

spooling program that reroutes all print requests to a disk.

 Output sent to printer for printing only when all of a job’s

output is complete and printer is ready to print out entire

document.

 Because disks are sharable devices, this technique can

convert one printer into several “virtual” printers, thus

improving both its performance and use.

Device Driver

 More commonly known as a driver, a device driver or hardware driver

 It is a group of files that enable one or more hardware devices to

communicate with the computer's operating system.

 Without drivers, the computer would not be able to send and receive data

correctly to hardware devices, such as a printer.

Device Driver

 Device Drivers are very essential for a computer system to work properly

because without device driver the particular hardware fails to work

accordingly means it fails in doing a particular function/action for which it

has been created.

What devices need drivers?

 Hardware devices that are unknown by the operating system or that have features that are unknown

by the operating system all require drivers.

 Below is a list of hardware devices and peripherals that require drivers.

 Card reader

 Controller

 Modem

 Motherboard chipset

 Network card

 Printer

 Scanner

 Sound card

 Tape drive

 USB devices

 Video card

What devices may not need drivers?

 Today's operating systems have a lot of generic drivers that
allow hardware to work at a basic level without needing drivers
or software.

 However, if that device has features unknown to the operating
system, it will not work without drivers.

 For example, you could plug any keyboard into a computer and
expect it to work. However, if that keyboard has any special
keys or features, they will not work until the drivers are
installed.

 CPU, Disc drive, Fan, Hard drive, Heat sink, Joystick, Keyboard,
Mouse, Monitor, Power supply, RAM, Speakers, UPS

Disk Scheduling Algorithms and Policies

• The algorithms used for disk scheduling are called as disk scheduling algorithms.

• The purpose of disk scheduling algorithms is to reduce the total seek time.

1. FCFS Algorithm

2. SSTF Algorithm

3. SCAN Algorithm

4. C-SCAN Algorithm

5. LOOK Algorithm

6. C-LOOK Algorithm

Disk Architecture

Disk Performance Parameters

1. Seek Time-

• The time taken by the read / write head to reach the desired track is called as seek
time.

• It is the component which contributes the largest percentage of the disk service time.

• The lower the seek time, the faster the I/O operation.

2. Rotational Latency-

• The time taken by the desired sector to come under the read / write head is called
as rotational latency.

• It depends on the rotation speed of the spindle.

3. Data Transfer Rate-

• The amount of data that passes under the read / write head in a given amount of time
is called as data transfer rate.

• The time taken to transfer the data is called as transfer time

 Disk Access Time

Disk access time = Seek time + Rotational Latency + Transfer Rate

1. FCFS Disk Scheduling Algorithm

• As the name suggests, this algorithm entertains requests in the order they arrive in the disk
queue.

• It is the simplest disk scheduling algorithm.

 Advantages-

• It is simple, easy to understand and implement.

• It does not cause starvation to any request.

 Disadvantages-

• It results in increased total seek time.

• It is inefficient.

Example
 Problem- Consider a disk queue with requests for I/O to blocks on cylinders 98, 183,

41, 122, 14, 124, 65, 67. The FCFS scheduling algorithm is used. The head is initially at
cylinder number 53. The cylinders are numbered from 0 to 199. The total head
movement (in number of cylinders) incurred while servicing these requests is

2. SSTF Disk Scheduling Algorithm

• SSTF stands for Shortest Seek Time First.

• This algorithm services that request next which requires least number of head movements
from its current position regardless of the direction.

• It breaks the tie in the direction of head movement.

 Advantages-

• It reduces the total seek time as compared to FCFS.

• It provides increased throughput.

• It provides less average response time and waiting time.

 Disadvantages-

• There is an overhead of finding out the closest request.

• The requests which are far from the head might starve for the CPU.

• It provides high variance in response time and waiting time.

• Switching the direction of head frequently slows down the algorithm.

Example
 Problem: Consider a disk queue with requests for I/O to blocks on cylinders 98, 183,

41, 122, 14, 124, 65, 67. The SSTF scheduling algorithm is used. The head is initially at
cylinder number 53 moving towards larger cylinder numbers on its servicing pass. The
cylinders are numbered from 0 to 199. The total head movement (in number of
cylinders) incurred while servicing these requests is _______.

3. SCAN Disk Scheduling Algorithm

• As the name suggests, this algorithm scans all the cylinders of the disk back and forth.

• Head starts from one end of the disk and move towards the other end servicing all the
requests in between.

• After reaching the other end, head reverses its direction and move towards the
starting end servicing all the requests in between.

• The same process repeats.

• SCAN Algorithm is also called as Elevator Algorithm.

• This is because its working resembles the working of an elevator.

 Advantages-

• It is simple, easy to understand and implement.

• It does not lead to starvation.

• It provides low variance in response time and waiting time.

 Disadvantages-

• It causes long waiting time for the cylinders just visited by the head.

• It causes the head to move till the end of the disk even if there are no requests to be
serviced.

Example
 Problem- Consider a disk queue with requests for I/O to blocks on cylinders 98, 183,

41, 122, 14, 124, 65, 67. The SCAN scheduling algorithm is used. The head is initially at
cylinder number 53 moving towards larger cylinder numbers on its servicing pass. The
cylinders are numbered from 0 to 199. The total head movement (in number of
cylinders) incurred while servicing these requests is _______.

4. C-SCAN Disk Scheduling Algorithm

• Circular-SCAN Algorithm is an improved version of the SCAN Algorithm.

• Head starts from one end of the disk and move towards the other end servicing all the
requests in between.

• After reaching the other end, head reverses its direction.

• It then returns to the starting end without servicing any request in between.

• The same process repeats.

 Advantages-

• The waiting time for the cylinders just visited by the head is reduced as compared to
the SCAN Algorithm.

• It provides uniform waiting time.

• It provides better response time.

 Disadvantages-

• It causes more seek movements as compared to SCAN Algorithm.

• It causes the head to move till the end of the disk even if there are no requests to be
serviced.

Example
 Problem- Consider a disk queue with requests for I/O to blocks on cylinders 98, 183,

41, 122, 14, 124, 65, 67. The C-SCAN scheduling algorithm is used. The head is initially
at cylinder number 53 moving towards larger cylinder numbers on its servicing pass.
The cylinders are numbered from 0 to 199. The total head movement (in number of
cylinders) incurred while servicing these requests is _______.

5. LOOK Disk Scheduling Algorithm

• LOOK Algorithm is an improved version of the SCAN Algorithm.

• Head starts from the first request at one end of the disk and moves towards the last
request at the other end servicing all the requests in between.

• After reaching the last request at the other end, head reverses its direction.

• It then returns to the first request at the starting end servicing all the requests in
between.

• The same process repeats.

 The main difference between SCAN Algorithm and LOOK Algorithm is-

• SCAN Algorithm scans all the cylinders of the disk starting from one end to the other
end even if there are no requests at the ends.

• LOOK Algorithm scans all the cylinders of the disk starting from the first request at one
end to the last request at the other end.

 Advantages-

• It does not causes the head to move till the ends of the disk when there are no
requests to be serviced.

• It provides better performance as compared to SCAN Algorithm.

• It does not lead to starvation.

• It provides low variance in response time and waiting time.

 Disadvantages-

• There is an overhead of finding the end requests.

• It causes long waiting time for the cylinders just visited by the head.

Example
 Problem- Consider a disk queue with requests for I/O to blocks on cylinders 98, 183,

41, 122, 14, 124, 65, 67. The LOOK scheduling algorithm is used. The head is initially at
cylinder number 53 moving towards larger cylinder numbers on its servicing pass. The
cylinders are numbered from 0 to 199. The total head movement (in number of
cylinders) incurred while servicing these requests is _______.

6. C-LOOK Disk Scheduling Algorithm

• Circular-LOOK Algorithm is an improved version of the LOOK Algorithm.

• Head starts from the first request at one end of the disk and moves towards the last
request at the other end servicing all the requests in between.

• After reaching the last request at the other end, head reverses its direction.

• It then returns to the first request at the starting end without servicing any request in
between.

• The same process repeats.

 Advantages-

• It does not causes the head to move till the ends of the disk when there are no
requests to be serviced.

• It reduces the waiting time for the cylinders just visited by the head.

• It provides better performance as compared to LOOK Algorithm.

• It does not lead to starvation.

• It provides low variance in response time and waiting time.

 Disadvantages-

• There is an overhead of finding the end requests.

Example
 Problem: Consider a disk queue with requests for I/O to blocks on cylinders 98, 183,

41, 122, 14, 124, 65, 67. The C-LOOK scheduling algorithm is used. The head is initially
at cylinder number 53 moving towards larger cylinder numbers on its servicing pass.
The cylinders are numbered from 0 to 199. The total head movement (in number of
cylinders) incurred while servicing these requests is _______.

5CS4-03 OPERATING SYSTEM

Unit-V

Case Study On:

• Unix, Linux

• Mobile OS

• RTOS

Unit-V OS Case Study-Unix & Linux OS

UNIX and Linux operating systems as case studies

What is LINUX?

It is an operating system at the top. It acts as an interface between the user and the machine to

perform specific task. The user performs some task in terms of input and this OS redirects the

instruction to the machine in machine language. After performing the specific task it sends the

computed task back to the user as an output. Well, all the operating system performs this task.

Now, we shall study more about the LINUX operating system. LINUX means “GNU/LINUX”

because LINUX is almost always used with the GNU tools.

LINUX is very similar to other operating systems like windows and OS X. There are certain

measures that categories this operating system among others. It is widely used operating system

apart from Windows. This operating system is run over various platforms from Pc’s to cellular

phones. Even supercomputers runs on LINUX.

The important thing under consideration of the LINUX is that it is open source operating

system. Open source simply means that its source code is available to all the users and it can be

modified. No one individually owns LINUX. The competition to impart much to this software

adds much to this operating system. About 1,000 developers across 100 different companies

contribute to different kernels of this software. Initially it was made for server as an operating

system. But this feature of open source has made LINUX to be used in any of the device in

modern time. It do not include executable (.exe) files hence it is all free from viruses and

hacking free software. This is the only reason that it is used in all of the major companies where

security of database is highly important.

What is UNIX?

The UNIX dates back to 1969. Since then, it has changed a lot and various versions are out till

today. It has built its versions for many platforms and different environments. It is the previous

version of LINUX. The full form of UNIX is UNiplexed Information Computing System

(UNICS), which was later termed as UNIX. This name has been given because the UNIX was

Unit-V OS Case Study-Unix & Linux OS

first developed in 1970s; it required the data and addresses buses to be uniplexed. They were not

multiplexed, hence it was named so.

What are the differences between LINUX and UNIX?

1. The developers of UNIX have a specific target audience and platform for their operating

system. They have a clear idea what applications they have to optimize to give users the best

results. Commercial UNIX vendors can do anything since they can maintain consistency

between different versions of UNIX.

Whereas the development of GNU/LINUX, is more diverse as compared to UNIX. Here the

developers come from different backgrounds and thus have different opinions and thinking.

There are no specific tools and restrictions with the LINUX. The tools can be used on new

editions without much testing.

2. Since the kernel is the most important part of any operating system. The source code is not

freely available for any of the commercial version of UNIX. Whereas in the case of LINUX; it

is freely available. Both the terms have a different compiling and patching kernels and drivers.

With Linux and other open source operating systems, a patch can be released in source code

form and end users can install it, or even verify and modify it if desired. These patches tend to be

far less tested than patches from UNIX vendors. Since there is not a complete list of applications

and environments that need to be tested on Linux, the Linux developers have to depend on the

many eyes of end users and other developers to catch errors.

Henceforth we can say that both these operating systems works fine in their fields and due to the

lack of (.exe) executable files it becomes virus less platform to work with. The security issues

are less in terms of hacking the database

Linux History

Linux looks and feels much like any other UNIX system; indeed, UNIX compatibility has been a

major design goal of the Linux project. However, Linux is much younger than most UNIX

systems. Its development began in 1991, when a Finnish university student, Linus Torvalds,

Unit-V OS Case Study-Unix & Linux OS

began developing a small but self-contained kernel for the 80386 processor, the first true 32-bit

processor in Intel’s range of PC-compatible CPUs.

History of UNIX and Linux:

• UNICS

• PDP-11 UNIX

• Portable UNIX

• Berkeley UNIX

• Standard UNIX

• MINIX

• Linux

Before Linux

– In 80’s, Microsoft’s DOS was the dominated OS for PC

– single-user, single-process system

– Apple MAC is better, but expensive

– UNIX is much better, but much much expensive. Only for minicomputer for commercial

applications

– People was looking for a UNIX based system, which is cheaper and can run on PC

– Both DOS, MAC and UNIX are proprietary, i.e., the source code of their kernel is protected

– No modification is possible without paying high license fees

GNU project

– Established in 1984 by Richard Stallman, who believes that software should be free from

restrictions against copying or modification in order to make better and efficient computer

programs

Unit-V OS Case Study-Unix & Linux OS

– GNU is a recursive acronym for “GNU's Not Unix”

– Aim at developing a complete Unix-like operating system which is free for copying and

modification

– Companies make their money by maintaining and distributing the software, e.g. optimally

packaging the software with different tools (Redhat, Slackware, Mandrake, SuSE, etc)

– Stallman built the first free GNU C Compiler in 1991. But still, an OS was yet to be developed

Beginning of Linux

– A famous professor Andrew Tanenbaum developed Minix, a simplified version of UNIX that

runs on PC

– Minix is for class teaching only. No intention for commercial use

– In Sept 1991, Linus Torvalds, a second year student of Computer Science at the University of

Helsinki, developed the preliminary kernel of Linux, known as Linux version 0.0.1

– It was put to the Internet and received enormous response from worldwide software developers

– By December came version 0.10. Still Linux was little more than in skeletal form.

– It was licensed under GNU General Public License, thus ensuring that the source codes will be

free for all to copy, study and to change

Linux Pros and Cons

Advantages over Windows

– It's almost free to relatively inexpensive

– Source code is included

– Bugs are fixed quickly and help is readily available through the vast support in Internet

– Linux is more stable than Windows

– Linux is truly multi-user and multi-tasking

Unit-V OS Case Study-Unix & Linux OS

– multiuser: OS that can simultaneously serve a number of users

– multitasking: OS that can simultaneously execute a number of programs

– Linux runs on equipment that other operating systems consider too underpowered, e.g. 386

systems, PDA, etc

Disadvantages compared with Windows

– Isn't as popular as Windows

– No one commercial company is responsible for Linux

– Linux is relatively hard to install, learn and use

Hence currently, Linux is mainly used incommercial applications, server implementation

More than 75% current network servers are developed based on Linux or UNIX systems

Linux System Architecture: Components of a Linux System

The Linux system is composed of three main bodies of code, in line with most traditional UNIX

implementations:

1. Kernel. The kernel is responsible for maintaining all the important abstractions of the operating

system, including such things as virtual memory and processes.

2. System libraries. The system libraries define a standard set of functions through which applications

can interact with the kernel. These functions implement much of the operating-system functionality that

does not need the full privileges of kernel code. The most important system library is the C library,

known as libc. In addition to providing the standard C library, libc implements the user mode side of the

Linux system call interface, as well as other critical system-level interfaces.

3. System utilities. The system utilities are programs that perform individual, specialized management

tasks. Some system utilities are invoked just once to initialize and configure some aspect of the system.

Others —known as daemons in UNIX terminology—run permanently, handling such tasks as responding

to incoming network connections, accepting logon requests from terminals, and updating log files.

Unit-V OS Case Study-Unix & Linux OS

Following Figure illustrates the various components that make up a full Linux system. The most

important distinction here is between the kernel and everything else. All the kernel code executes in the

processor’s privileged mode with full access to all the physical resources of the computer. Linux refers to

this privileged mode as kernel mode. Under Linux, no user code is built into the kernel. Any operating-

system-support code that does not need to run in kernel mode is placed into the system libraries and runs

in user mode. Unlike kernel mode, user mode has access only to a controlled subset of the system’s

resources.

Process Management

– For a multitask system, multiple programs can be executed simultaneously in the system

– When a program starts to execute, it becomes a process

– The same program executing at two different times will become two different processes

– Kernel manages processes in terms of creating, suspending, and terminating them

– A process is protected from other processes and can communicate with the others

The fork() and exec() Process Model:

The basic principle of UNIX process management is to separate into two stepstwo

operations that are usually combined into one:

• the creation of a newprocess

• and the running of a new program.

Unit-V OS Case Study-Unix & Linux OS

A new process is created by thefork() system call, and a new program is run after a

call to exec().

These aretwo distinctly separate functions. We can create a new process with

fork()without running a new program.

Any process may call exec() atany time. A new binary object is loaded into the

process’s address space andthe new executable starts executing in the context of

the existing process.

This model has the advantage of great simplicity. It is not necessary tospecify

every detail of the environment of a new program in the system call thatruns that

program. The new program simply runs in its existing environment.

If a parent process wishes to modify the environment in which a new programis to

be run, it can fork and then, still running the original executable in a childprocess,

make any system calls it requires to modify that child process beforefinally

executing the new program.

Broadly, process properties fall into three groups:

• the processidentity,

• environment,

• and context.

• Process Identity

A process identity consists mainly of the following items:

• Process ID (PID). Each process has a unique identifier. The PID is used to

specify the process to the operating system when an application makes a system

Unit-V OS Case Study-Unix & Linux OS

call to signal, modify, or wait for the process. Additional identifiers associate the

process with a process group (typically, a tree of processes forked by a single user

command) and login session.

• Credentials. Each process must have an associated userID and one or more group

IDs that determine the rights of a process to access system resources and files.

• Personality. Process personalities are not traditionally found on UNIX systems,

but under Linux each process has an associated personality identifier that can

slightly modify the semantics of certain system calls.

• Namespace. Each process is associated with a specific view of the filesystem

hierarchy, called its namespace. Most processes share a common namespace and

thus operate on a shared file-system hierarchy. Processes and their children can,

however, have different namespaces, each with a unique file-system hierarchy—

their own root directory and set of mounted file systems.

• Process Environment

A process’s environment is inherited from its parent and is composed of two null-

terminated vectors: the argument vector and the environment vector. The argument

vector simply lists the command-line arguments used to invoke the running

program; it conventionally starts with the name of the program itself.

The environment vector is a list of “NAME=VALUE” pairs that associates named

environment variables with arbitrary textual values. The environment is not held in

kernel memory but is stored in the process’s own user-mode address space as the

first datum at the top of the process’s stack.

Unit-V OS Case Study-Unix & Linux OS

The argument and environment vectors are not altered when a new process is

created. The new child process will inherit the environment of its parent.

However, a completely new environment is set up when a new program is invoked.

On calling exec(), a process must supply the environment for the new program.

The kernel passes these environment variables to the next program, replacing the

process’s current environment. The kernel otherwise leaves the environment and

command-line vectors alone—their interpretation is left entirely to the user-mode

libraries and applications.

• Process Context

The process identity and environment properties are usually set up when a process

is created and not changed until that process exits. A process may choose to change

some aspects of its identity if it needs to do so, or it may alter its environment. In

contrast, process context is the state of the running program at any one time; it

changes constantly.

Process context includes the following parts:

• Scheduling context. The most important part of the process context is

itsscheduling context—the information that the scheduler needs to suspend and

restart the process. This information includes saved copies of all the process’s

registers. Floating-point registers are stored separately and are restored only when

needed. Thus, processes that do not use floating-point arithmetic do not incur the

overhead of saving that state. The scheduling context also includes information

about scheduling priority and about any outstanding signals waiting to be delivered

to the process

Unit-V OS Case Study-Unix & Linux OS

• Accounting. The kernel maintains accounting information about the resources

currently being consumed by each process and the total resources consumed by the

process in its entire lifetime so far.

• File table. The file table is an array of pointers to kernel file structures

representing open files. When making file-I/O system calls, processes refer to files

by an integer, known as a file descriptor (fd), that the kernel uses to index into this

table.

• File-system context. Whereas the file table lists the existing open files, the file-

system context applies to requests to open new files. The file-system context

includes the process’s root directory, current working directory, and namespace.

• Signal-handler table. UNIX systems can deliver asynchronous signals to a

process in response to various external events. The signal-handler table defines the

action to take in response to a specific signal. Valid actions include ignoring the

signal, terminating the process, and invoking a routine in the process’s address

space.

• Virtual memory context. The virtual memory context describes the full contents

of a process’s private address space.

Process Scheduling

Linux has two separate process-scheduling algorithms.

One is a time-sharing algorithm for fair, preemptive scheduling among multiple processes.

The other is designed for real-time tasks, where absolute priorities are more important than

fairness.

Unit-V OS Case Study-Unix & Linux OS

The Linux scheduler is a preemptive, priority-based algorithm with two separate priority ranges:

a real-time range from 0 to 99 and a nice value ranging from −20 to 19. Smaller nice values

indicate higher priorities. Thus, by increasing the nice value, you are decreasing your priority

and being “nice” to the rest of the system.

Let us now see some more important differences between Linux and Unix in the below tabular

format:

Features Linux Unix

Developer Inspired by MINIX (a Unix-like OS), Linux

was originally developed by Finnish-

American software engineer Linus

Torvalds. Since it is an open source, we

have community developers for Linux.

Originally derived from AT&T

Unix, it was developed at Bell Labs

by Kenneth Lane Thompson, Dennis

Ritchie, and 3 others.

Unit-V OS Case Study-Unix & Linux OS

Features Linux Unix

Written in C and other programming languages. C and assembly language.

OS family Unix-like Unix

Source Model Open source Mixed. Traditionally closed source,

however, few Unix projects are open

source which include illumosOS and

BSD (Berkley Software

Distribution) OS.

Available in Multilingual English

Initial release Linux is newer when compared to Unix. It

was derived from Unix and was released in

September 1991.

Unix is older. Was released in

October 1973 for outside parties.

Before that, it was used internally in

Bell Labs since its inception in

1970.

Kernel Type Monolithic kernel Kernel Type varies. It can be

monolithic, microkernel and hybrid.

License GNUv2(GPL General Public License) and

others.

Licensing varies. Few versions are

proprietary while others are

free/OSS.

Official

Website

https://www.kernel.org/ http://opengroup.org/unix

Default user

interface

Unix shell CLI (Command Line Interface) and

Graphical (X Windows system)

Text Mode

Interface

By default, the shell is BASH (Bourne

Again Shell). Moreover, is compatible with

Originally the Bourne shell. It is

also compatible with many

http://www.kernel.org/
http://opengroup.org/unix

Unit-V OS Case Study-Unix & Linux OS

Features Linux Unix

many command interpreters. command interpreters.

Cost Can be obtained and used freely. There are

priced versions of Linux as well. But,

generally, Linux is cheaper than Windows.

Proprietary operating systems have

different cost structures set

accordingly by the vendors selling

it.

Examples Debian, Ubuntu, Fedora, Red Hat, Android,

etc.

IBM AIX, Solaris, HP-UX, Darwin,

macOS X, etc.

Architecture Was originally created for Intel's x86

hardware, ports available for a lot of CPU

types.

Compatible with PA and Itanium

machines. Solaris is also available

on x86/x64. OSX is PowerPC.

Threat

detection and

solution

As Linux is mainly driven by open source

community, many developers across

different parts of the world are working on

the code. Hence threat detection and

solution is quite fast in case of Linux.

Due to the proprietary nature of

Unix, users need to wait for proper

bug fixing patches.

Security Both Linux and Unix based OS is generally

regarded as very well protected against

malware. This is attributable to lack of root

access, quick updates and comparatively

low market share (as compared to

windows). As of 2018, there has been none

widespread Linux virus.

Unix is also considered to be very

safe. It is even harder to infect as the

source is also not available. There is

no actively spreading virus for Unix

nowadays.

Price Linux is free. However, corporate support is

available at a price.

Unix is not free. However, some

Unix versions are free for

development use (Solaris). In a

collaborative environment, Unix

Unit-V OS Case Study-Unix & Linux OS

Features Linux Unix

costs $1,407 per user and Linux

costs $256 per user.

Hence, UNIX is extremely

expensive.

Unit-V OS, Case Study-Mobile OS

Mobile Operating System

1. Introduction :

A mobile operating system (or mobile OS) is an operating system for

phones, tablets, smartwatches, or other mobile devices.

While computers such as typical laptops are 'mobile', the operating systems usually used on them

are not considered mobile ones, as they were originally designed for desktop computers that

historically did not have or need specific mobile features. This distinction is becoming blurred in

some newer operating systems that are hybrids made for both uses.

Mobile operating systems combine features of a personal computer operating system with other

features useful for mobile or handheld use; usually including, and most of the following

considered essential in modern mobile systems; a wireless inbuilt modem and SIM tray for

telephony and data connection.

Mobile devices with mobile communications abilities (e.g., smartphones) contain two mobile

operating systems – the main user-facing software platform is supplemented by a second low-

level proprietary real-time operating system which operates the radio and other hardware.

Mobile operating systems have majority use since 2017 (measured by web use); with even only

the smartphones running them (excluding tablets) more used than any other kind of device. Thus

traditional desktop OS is now a minority used kind of OS.

Popular Mobile Operating Systems

1. Android OS (Google Inc.)

The Android mobile operating system is Google's open and free software stack that includes an

operating system, middleware and also key applications for use on mobile devices, including

smartphones. Updates for the open source Android mobile operating system have been

developed under "dessert-inspired" version names (Cupcake, Donut, Eclair, Gingerbread,

https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/Smart_match_operator
https://en.wikipedia.org/wiki/Mobile_device
https://en.wikipedia.org/wiki/Laptop
https://en.wikipedia.org/wiki/Desktop_computer
https://en.wikipedia.org/wiki/Personal_computer
https://www.webopedia.com/TERM/A/android_codenames.html

Unit-V OS, Case Study-Mobile OS

Honeycomb, Ice Cream Sandwich) with each new version arriving in alphabetical order with

new enhancements and improvements.

2. Bada (Samsung Electronics)

Bada is a proprietary Samsung mobile OS that was first launched in 2010. The Samsung Wave

was the first smartphone to use this mobile OS. Bada provides mobile features such as

multipoint-touch, 3D graphics and of course, application downloads and installation.

3. BlackBerry OS (Research In Motion)

The BlackBerry OS is a proprietary mobile operating system developed by Research In Motion

for use on the company’s popular BlackBerry handheld devices. The BlackBerry platform is

popular with corporate users as it offers synchronization with Microsoft Exchange, Lotus

Domino, Novell GroupWise email and other business software, when used with the BlackBerry

Enterprise Server.

4. iPhone OS / iOS (Apple)

Apple's iPhone OS was originally developed for use on its iPhone devices. Now, the mobile

operating system is referred to as iOS and is supported on a number of Apple devices including

the iPhone, iPad, iPad 2 and iPod Touch. The iOS mobile operating system is available only on

Apple's own manufactured devices as the company does not license the OS for third-party

hardware. Apple iOS is derived from Apple's Mac OS X operating system.

5. MeeGo OS (Nokia and Intel)

A joint open source mobile operating system which is the result of merging two products based

on open source technologies: Maemo (Nokia) and Moblin (Intel). MeeGo is a mobile OS

designed to work on a number of devices including smartphones, netbooks, tablets, in-vehicle

information systems and various devices using Intel Atom and ARMv7 architectures.

https://www.webopedia.com/TERM/P/proprietary.html
https://www.webopedia.com/TERM/B/BlackBerry.html
https://www.webopedia.com/TERM/I/iPhone.html
https://www.webopedia.com/TERM/O/open_source.html

Unit-V OS, Case Study-Mobile OS

6. Palm OS (Garnet OS)

The Palm OS is a proprietary mobile operating system (PDA operating system) that was

originally released in 1996 on the Pilot 1000 handheld. Newer versions of the Palm OS have

added support for expansion ports, new processors, external memory cards, improved security

and support for ARM processors and smartphones. Palm OS 5 was extended to provide support

for a broad range of screen resolutions, wireless connections and enhanced multimedia

capabilities and is called Garnet OS.

7. Symbian OS (Nokia)

Symbian is a mobile operating system (OS) targeted at mobile phones that offers a high-level of

integration with communication and personal information management (PIM) functionality.

Symbian OS combines middleware with wireless communications through an integrated mailbox

and the integration of Java and PIM functionality (agenda and contacts). Nokia has made the

Symbian platform available under an alternative, open and direct model, to work with some

OEMs and the small community of platform development collaborators. Nokia does not maintain

Symbian as an open source development project.

8. webOS (Palm/HP)

WebOS is a mobile operating system that runs on the Linux kernel. WebOS was initially

developed by Palm as the successor to its Palm OS mobile operating system. It is a proprietary

Mobile OS which was eventually acquired by HP and now referred to as webOS (lower-case w)

in HP literature. HP uses webOS in a number of devices including several smartphones and HP

TouchPads. HP has pushed its webOS into the enterprise mobile market by focusing on

improving security features and management with the release of webOS 3.x. HP has also

announced plans for a version of webOS to run within the Microsoft Windows operating system

and to be installed on all HP desktop and notebook computers in 2012.

https://www.webopedia.com/TERM/P/personal_information_manager.html
https://www.webopedia.com/TERM/M/middleware.html
https://www.webopedia.com/TERM/L/Linux.html
https://www.webopedia.com/TERM/K/kernel.html
https://www.webopedia.com/TERM/H/HP.html

Unit-V OS, Case Study-Mobile OS

9. Windows Mobile (Windows Phone)

Windows Mobile is Microsoft's mobile operating system used in smartphones and mobile

devices – with or without touchscreens. The Mobile OS is based on the Windows CE 5.2 kernel.

In 2010 Microsoft announced a new smartphone platform called Windows Phone 7.

Microkernel Design in Mobile OS:

Microkernel assigns only a small number of essential processes to the kernel such as address

space management, inter process communication and scheduling and provides all other services

in separate processes called servers.

Essential components and minimalist: If the hardware provides multiple rings or CPU modes, the

microkernel may be the only software executing at the most privileged level, which is generally

referred to as supervisor or kernel mode. Traditional operating system functions, such as device

drivers, protocol stacks and file systems, are typically removed from the microkernel itself and

Unit-V OS, Case Study-Mobile OS

are Everything else can be done in a usermode program, although device drivers implemented as

user programs may on some processor architectures require special privileges to access I/O

hardware.

A key component of a microkernel is a good IPC system and virtual-memory-manager design

that allows implementing page-fault handling and swapping in usermode servers in a safe way.

Since all services are performed by usermode programs, efficient means of communication

between programs are essential, far more so than in monolithic kernels. The design of the IPC

system makes or breaks a microkernel. To be effective, the IPC system must not only have low

overhead, but also interact well with CPU scheduling.

File system in Mobile OS:

Mobile file management (MFM) is a type of information technology (IT) software that allows

businesses to manage transfers and storage of corporate files and other related items on a mobile

device, and allows the business to oversee user access.

Mobile file management software is typically installed on a corporate file server like Windows

2008, and on a mobile device such as tablet computers and smartphones, e.g., Android, iPad,

iPhone, etc. Other features include the ability to remotely wipe a lost or stolen device, access,

cache and store files on a mobile device and integrate with file permission solutions like those

from Microsoft's Active Directory.

A main advantage of modern mobile file management solutions is that they do not need a VPN

connection for the mobile devices to connect to the corporate file servers. The connection

between the mobile device and the corporate file server is established via a cloud service. This

way the corporate file server doesn't need to open incoming ports which would cause security

issues.

The files are transferred highly encrypted - e.g. according to AES 256 Bit industry standard.

Only the company server and the mobile device keep the encryption key to be able to encrypt

and decrypt the files. So nobody, not even the mobile file management solution provider, can

Unit-V OS, Case Study-Mobile OS

access the files. Third-party cloud-based companies provide solutions which can be used to

manage mobile files but are not controlled by corporate IT organizations.

File management is how the computer operating system keeps data organized through the use of

files and folders, how they are arranged, and how they are listed in a hierarchical order .Mobile

file management allows file management to be used on tablet computers. By installing it both on

the tablet and the corporate server, users of mobile devices can freely access corporate servers

from remote locations.

Mobile OS Architecture:

Unit-V OS, Case Study-Mobile OS

• Symbian OS Architecture:

This Operating system was developed by NOKIA.

Architecture:

The System Kernel, File Server, Memory Management and Device drivers are located in the

Base Operating System Layer. The Kernel manages system resources and responsible for time-

slicing the applications and system tasks. The topmost layer of symbian provides the frameworks

and libraries for constructing user interface controls and utilities.

The Application Engine layer provides services that support generic types of applications and

OS Services layer provides servers, Frameworks and libraries that implement core Operating

system support for graphics, communications, connectivity and Multimedia. Java VM Provides a

set of APIs for mobile devices on the topmost of the OS.

Advantages:

A. Designed from scratch for mobile platforms

B. High Quality Games

C. Easier and Faster Connectivity.

Disadvantages:

Unit-V OS, Case Study-Mobile OS

A. Continuous Shifts in GUIs

B. Frequent hangs and late responses.

Features :Multi Tasking, Good Performance,

• Palm OS Architecture:

This operating system is especially designed for PDAs and handheld devices.

System libraries let the developers easily extend thefunctionality of OS. Hardware layer is finely

tunedand optimized to support a very specific range ofH/W, CPU, Controller Chips and Smaller

screens ofPalm OS Based devices. 3rd party libraries providesupport for 3rd party applications

such as games,graphics drawings.

Disadvantages

A. No Keyboard

B. No full text Recognition

Advantages

Unit-V OS, Case Study-Mobile OS

A. Hand writing input recognition

B. Expansion Support

C. Memory Management

• Android OSArchitecture:

The most popular mobile operating system today in mobile market. The Android OS is an open

source software, which means that any user can bring improvements to the operating system,

therefore one may benefit not only from Google developers’ know-how, but also from that of

third-party developers. Google opened the entire source code (including the network and

telephony support) so producers are free to add extensions without making them available to the

open source community. Android has been criticized for the fact that some parts of libraries and

APIs are not fully open source

Android version history:

Code

name

Version

numbers

Initial release

date

API

level

No codename

1.0

September 23, 2008

1

Petit Four (only internally used)

1.1

February 9, 2009

2

Cupcake

1.5

April 27, 2009

3

Donut

1.6

September 15, 2009

4

https://en.wikipedia.org/wiki/Android_Cupcake
https://en.wikipedia.org/wiki/Android_Donut

Unit-V OS, Case Study-Mobile OS

Eclair

2.0 – 2.1

October 26, 2009

5 – 7

Froyo

2.2 – 2.2.3

May 20, 2010

8

Gingerbread

2.3 – 2.3.7

December 6, 2010

9 – 10

Honeycomb

3.0 – 3.2.6

February 22, 2011

11 – 13

Ice Cream Sandwich

4.0 – 4.0.4

October 18, 2011

14 – 15

Jelly Bean

4.1 – 4.3.1

July 9, 2012

16 – 18

KitKat

4.4 – 4.4.4

October 31, 2013

19 – 20

Lollipop

5.0 – 5.1.1

November 12, 2014

21 – 22

Marshmallow

6.0 – 6.0.1

October 5, 2015

23

Nougat

7.0 – 7.1.2

August 22, 2016

24 – 25

Oreo

8.0 – 8.1

August 21, 2017

26 – 27

Pie

9.0

August 6, 2018

28

https://en.wikipedia.org/wiki/Android_Eclair
https://en.wikipedia.org/wiki/Android_Froyo
https://en.wikipedia.org/wiki/Android_Gingerbread
https://en.wikipedia.org/wiki/Android_Honeycomb
https://en.wikipedia.org/wiki/Android_Ice_Cream_Sandwich
https://en.wikipedia.org/wiki/Android_Jelly_Bean
https://en.wikipedia.org/wiki/Android_KitKat
https://en.wikipedia.org/wiki/Android_Lollipop
https://en.wikipedia.org/wiki/Android_Marshmallow
https://en.wikipedia.org/wiki/Android_Nougat
https://en.wikipedia.org/wiki/Android_Oreo
https://en.wikipedia.org/wiki/Android_Pie

Unit-V OS, Case Study-Mobile OS

Android 10

10.0

September 3, 2019

29

Linux kernel acts as an abstraction layer between thehardware and the rest of the software

stack. Androidruntime includes core libraries and Dalvik VM Corelibraries have a set of

libraries to provide thefunctionality of JAVA PL. Every pplication runs onits own Dalvik

VM which executes files in .dexformat.

Android has a set of c/c++ libraries used byvarious components of operating system. It

shipswith a set of core applications that offers developersthe ability to build various

applications with an opendevelopment.

Advantages: Multitasking, Ease of access tothousands of applications, Diverse Phone

options.

Disadvantages: Needed Continuous InternetConnection, Advertising, Range of applications

canstill be expanded.

• IOS Architecture:

A mobile operating system developed byApple Inc. and distributed exclusively for Apple.

https://en.wikipedia.org/wiki/Android_10

Unit-V OS, Case Study-Mobile OS

Hardware refers to physical chips soldered to iphone circuitry. Firmware refers to chip

specific code that is either contained in with memory in/around the peripheral itself or within

the drive for said peripheral. Processor refers to ARM Instruction set and interrupt descriptor

table as setup by OS during boot process. iPhone OS is the kernel, drivers and services that

sits between user space and Hardware. Runtime is composed of dynamic link libraries as

well as underlying C libraries.

Frameworks/API has API calls which are apple distributed headers with IPhone SDK. The

Application stored in iPhone has to be purchased through App Store, This App was compiled

to native code by compiler and linked with runtime by the linker. The application runs

entirely within user space environment set up by the iPhone OS

Advantages: Direct Twitter Integration,Advance Voice Recognition, Facetime to makeVideo

calls.

Disadvantages: No flash Support, Dependenton Apple hardware, App Approval process is

largelya black box to developers, facetime is exclusive toIOS powered devices.

Windows Phone OS Architecture:

Developed by Microsoft.

Unit-V OS, Case Study-Mobile OS

The Hardware is composed of ARM 7 CPU, Direct X 9 Capable GPU, 256 MB RAM,

Capacitative multi touch display with required Physical buttons. Kernel Handles low level

device driver access as well as basic security, networking and storage. The three libraries

App Model, UI Model and Cloud Integration Model sit above the kernel for application

management and notifications.

Application facing APIs include silver light, HTMl/Java Script and CLR that supports

C#.Net and VB.Net applications.

Advantages: Multitasking, Feature additions,Multimedia, Camera Technology

Unit-V OS, Case Study-Mobile OS

Case Study: Android Operating System

CONTENTS

1 Introduction ... 15

2 Structure .. 16

2.1 Kernel ... 16

2.2 Shell .. 17

2.2.1 Libraries .. 17

2.2.2 Android Runtime .. 18

2.2.3 Application Framework .. 18

2.2.4 Applications .. 19

3 Process Management .. 20

3.1 Processes .. 20

3.2 Applications and Tasks .. 21

3.3 Application Internals .. 21

3.4 Application Life Cycle ... 22

Unit-V OS, Case Study-Mobile OS

Introduction
Android is a mobile operating system developed by Google based on the Linux kernel. Android

is mainly designed for smartphone devices which implement a touch screen input interface. It

has also been developed for other devices such as tablet computers, smart watches (Android

Wear) and cars (Android Auto.)

Android is known for its OS touch inputs that correspond to real world actions such as tapping,

swiping, pinching and reverse pinching.

Android is the most popular mobile operating system, competing with IOS for apple devices and

Windows Phone. A developer survey conducted in April–May 2013 found that 71% of mobile

developers develop for Android

Android Source code is released by Google under the open source licenses though most Android

devices ship with a combination of open source software and proprietary software developed and

licensed by Google. The open source nature of Android has enabled many to create and

distribute their own modified version of the OS through the Android Open Source Project

(ASOP). CyanogenMod is the most widely used community firmware.

Unlike other mobile operating systems, Android is written in Java and is run on virtual machines.

Android features the Dalvik Runtime Machine and Android Runtime in newer versions which

executes its own bytecode. Dalvik is a core component and all Android user applications and the

application framework are written in Java and executed in Dalvik.

The development of Android takes place quickly with a new version being released every few

months. Android release numerous updates that incrementally improve the operating system

adding new features and fixing bugs in older releases. Each major release is released under the

name of a dessert or sugary treat. The first version of Android was released in 2008, named cup

cake and the versions to follow are Donut, Éclair, Froyo, Gingerbread, HoneyComb, Icecream

Sandwich, Jelly Bean, KitKat and the latest, Lollipop.

Unit-V OS, Case Study-Mobile OS

Structure
Android software stack is subdivided into five parts: Applications, Application Framework,

Libraries, Android Runtime, and the Linux Kernel.

Figure 1: Structure of the Android OS

1. Kernel
The kernel is the core of the operating system. Androids kernel is built off of the Linux 2.6

kernel with some architectural modifications which are implemented by google outside the usual

linux kernel development cycle. Linux kernel is a monolithic kernel, meaning that most of the

operating system is found in the kernel space, such as device drivers, kernel extensions. This

result in very large source code.

Unit-V OS, Case Study-Mobile OS

The Linux Kernel is what interacts with the hardware and contains all device drivers used by

higher levels of the software stack to control and communicate with the hardware. Such drivers

are the Display Driver, Camera Driver, Flash Memory Driver, Audio Driver e.t.c

The kernel is modified for special needs in mobile devices such as power management, memory

management and the runtime management.

2. Shell

The shell is the user space of the operating system. It acts as the intermediary between the user

and the operating system. The Android shell is divided into the following parts

2.1 Libraries

This is the layer that enables the device to handle different types of data. These libraries are

written in C or C++ language and are specific to a particular hardware. Androids standard C

library is optimized for devices with low power consumption and little memory.

The libraries used by Linux ,GNU libs (glibc), are too big and complicated for mobile devices

and so Android implements its own version of libc – Bionic libc. The benefits of using Bionic

are its smaller footprint and optimization for low frequency CPUs, used by mobile devices.

Some native libraries implemented in Bionic are:

• Surface Manager

This handles screen access for the window manager from the framework layer. It composites

screens using off screen buffering meaning that apps can’t directly draw into the screen, but

instead the drawings go into the off screen buffer. In the off screen buffer, drawings are

combined to form the final output to screen which the user will see, including the status bar at

the top and navigation buttons at the bottom of the screen. The off screen buffer is also

responsible for the transparency of windows

• Media Framework

This includes audio and video codecs which are heavily optimized for mobile devices. They

allow for recording and playback of various formats of audio and video such as mp3, mp4, avi,

wav e.t.c

Unit-V OS, Case Study-Mobile OS

• SQLite

This is the database engine used by android in storage of all data

• Webkit

The browser engine used in rendering HTML webpages

• OpenGL

Used to render 3D images on screen

2.2 Android Runtime

The Android Runtime consists of the Dalvik Virtual Machine (DVM) or Android RunTime

(ART) and core Java libraries.

The Dalvik Virtual Machine is an interpreter for bytecode that has been transformed by Java

code to Dalvik bytecode. It is an optimized Java Virtual Machine optimized for low processing

power and low memory requirements. The DVM runs .dex files (Dalvik executable files) instead

of .class files which the JVM runs. Dalvik is compiled into native code whereas the core libraries

are written in Java thus interpreted by Dalvik.

Android Runtime (ART) is a newer virtual machine introduced by Google in their newer releases

of Android. ART works similarly to Dalvik with many advantages such as AOT (Ahead Of

Time) complitation and improved garbage collection which boosts performance significantly.

The Core Java Libraries provide most of the functionalities defined in the Java SE libraries

2.3 Application Framework

These are frameworks written in Java that provide abstractions of the underlying native libraries

and Dalvik capabilities. The frameworks are blocks which the applications directly interact with.

They provide the basic functions of phones like resource management, voice call management

e.t.c. They are the basic tools used to build applications. Some important blocks in the

application framework layer are:

• Activity Manager: Manages activity life of applications

Unit-V OS, Case Study-Mobile OS

• Content Providers: Manages data sharing between applications

• Telephone Manager: Manages all voice calls

• Location Manager: Uses GPS or cell towers for location management

• Resource Manager: Managers many types of resources used in applications

2.4 Applications

This is the top most layer of the operating system containing all the apps that users interact with.

Android applications run in their own Dalvik Virtual Machine and consist of many components

such as activities, services, broadcast receivers and content providers. Components interact with

each other in the same or different application via intents.

Various apps come pre-installed with android devices such as SMS client app, dialer, web

browser, file explorer etc. There is a large community of developers who have come up with

various types of applications such as games, document readers, social networks and various

others

Unit-V OS, Case Study-Mobile OS

Process Management

Android provides several means on different layers to compose, execute and manage

applications.

Processes

A process is an instance of a program that is being executed. In Android, there are five different

stages a process goes through in its lifecycle. The various types have different importance levels

which are strictly ordered. The importance hierarchy is (descending from highest importance)

1. Foreground Process: This is the app currently in use by the user. Other processes can be

considered foreground processes if theyre interacting with the process that’s currently in

the foreground. There are a few foreground processes at any given time

2. Visible Process: This is a process that isn’t in the foreground but is still affecting what is

seen on the screen. For example, a foreground process maybe a diaplog but the visible

process is the app in the background of the screen which triggered the dialog.

3. Service Process: This is a process that isn’t tied to any app on screen but is still doing

something in the background such as playing music or downloading files

4. Background Process: These are processes that are currently not visible to the user and

therefore do not have any impact on the user experience. These are apps that are paused

and are kept in memory for quick access in the future. They do not use valuable CPU

time and other resources apart from memory

5. Empty Process: This does not contain any app data anymore. They are kept around for

caching purposes to speed launch later but maybe killed by the system if necessary.

Usually only background and empty processes are killed by the system and so the user

experience stays unaffected. Android only kills apps when the memory usage goes too high but

usually Android does not kill apps

Unit-V OS, Case Study-Mobile OS

Processes can contain multiple threads such as in Linux based systems. Most Android

applications implement thread to separate the UI from inout handling and I/O operations or long

running calculations.

Applications and Tasks

Android applications are made up of processes and their included threads. Tasks are a series of

activities of possibly multiple applications. A task is basically a history of a user’s actions. E.g.

When a user reads their mail and opens a link which uses the browser application. In this case,

the task is made up of two applications (mail and browser) and many activities. The importance

of the task concept is that it allows users to navigate backwards like popping elements of a stack.

Application Internals

The structure of an Android applications is based on four different components which are

Activity, Service, Broadcast Receiver and Content Provider. An application doesn’t necessarily

have all these components but it should at least have an Activity in order to present a graphical

user interface.

Services and broadcast receivers allow applications to perform jobs in the background. Services

usually run for a long time but broadcast receivers can be triggered by events and run for a short

time.

Unit-V OS, Case Study-Mobile OS

Application Life Cycle

Figure 2: Activity Life Cycle

Unit-V OS, Case Study-Mobile OS

An activity is a single screen of an application. It contains visual elements that allow user

interaction. An application caontains many activities. The state of an android applications

processes is determined by the state of the application’s components, such as its activities. As the

application components alter their states the underlying type of the process is changed. All

activities are subclasses from android.app.Activity and their life cycle is controlled by the

On…() functions.

As an application starts, the following functions are called sequentially OnCreate(), OnStart()

and OnResume(). OnCreate() is called only one in the lifetime of a process but OnStart() and

OnResume() are called more often. If an activity loses focus then the OnPause() function is

called. If the activity is no longer visible then the OnStop() function is called. Before deleting the

activity OnDestroy() function is called which end the activity lifetime

The following describes the functions in detail:

• OnCreate(): The initial functions that initialized the activity.

• OnStart(): The process type changes to visible and the activity is about to become

visible to the user

• OnResume(): The process is is set to foreground. The application gets focus and can get

user input.

• OnPause(): When the device goes to sleep or the application loses focus the process is

set to visible. From here, the process may be resumed or stopped

• OnStop(): The activity is not visible and the process type is set to background and the

application can be killed at any time

• OnDestroy(): This method is called right before the system kills the process and the

application deletes the activity.

Unit-V OS Case Study -RTOS

Real Time Operating System (RTOS)

What is an RTOS?

As the name suggests, there is a deadline associated with tasks and an RTOS adheres

to this deadline as missing a deadline can cause affects ranging from undesired to

catastrophic.

The embedded systems are becoming more and more complex today and with each

passing generation their intrusion in our daily lives will become deeper. This means

they will bear more and more responsibilities on their shoulders to solve real time

problems to make our life easier. But, this requires more and more complex real time

applications that RTOS will have to manage effectively.

Some of the most widely used RTOS are :

▪ LynxOS

▪ OSE

▪ QNX

▪ RTLinux

▪ VxWorks

▪ Windows CE

Unit-V OS Case Study -RTOS

Classification of RTOS:

RTOS can be classified into three types :

1. Hard RTOS : These type of RTOS strictly adhere to the deadline associated with

the tasks. Missing on a deadline can have catastrophic affects. The air-bag

example is example of a hard RTOS as missing a deadline there could cause a life.

2. Firm RTOS : These type of RTOS are also required to adhere to the deadlines

because missing a deadline may not cause a catastrophic affect but could cause

undesired affects, like a huge reduction in quality of a product which is highly

undesired.

3. Soft RTOS : In these type of RTOS, missing a deadline is acceptable. For

example On-line Databases.

Features of RTOS

An RTOS must be designed in a way that it should strike a balance between

supporting a rich feature set for development and deployment of real time applications

and not compromising on the deadlines and predictability.

The following points describe the features of an RTOS :

▪ Context switching latency should be short. This means that the time taken while

saving the context of current task and then switching over to another task should

be short.

▪ The time taken between executing the last instruction of an interrupted task and

executing the first instruction of interrupt handler should be predictable and short.

This is also known as interrupt latency.

Unit-V OS Case Study -RTOS

▪ Similarly the time taken between executing the last instruction of the interrupt

handler and executing the next task should also be short and predictable. This is

also known as interrupt dispatch latency.

▪ Reliable and time bound inter process mechanisms should be in place for

processes to communicate with each other in a timely manner.

▪ An RTOS should have support for multitasking and task preemption. Preemption

means to switch from a currently executing task to a high priority task ready and

waiting to be executed.

▪ Real time Operating systems but support kernel preemption where-in a process in

kernel can be preempted by some other process.

Some Misconceptions related to RTOS

▪ RTOS should be fast. This is not true. An RTOS should have a deterministic

behavior in terms of deadlines but its not true that the processing speed of an

RTOS is fast. This ability of responsiveness of an RTOS does not mean that they

are fast.

▪ All RTOS are same. As already discussed we have three types of RTOS (Hard,

firm and soft).

▪ RTOS cause considerable amount of CPU overhead. Well, again this is not true.

Only 1%-4% of CPU time is required by an RTOS.

Unit-V OS Case Study -RTOS

RTOS Architecture

RTOS Architecture

For simpler applications, RTOS is usually a kernel but as complexity increases, various modules

like networking protocol stacks debugging facilities, device I/Os are includes in addition to the

kernel.

The general architecture of RTOS is shown in the fig.

A) Kernel

RTOS kernel acts as an abstraction layer between the hardware and the applications.

There are three broad categories of kernels

· Monolithic kernel

Monolithic kernels are part of Unix-like operating systems like Linux, FreeBSD etc. A

monolithic kernel is one single program that contains all of the code necessary to

Unit-V OS Case Study -RTOS

perform every kernel related task. It runs all basic system services (i.e. process and

memory management, interrupt handling and I/O communication, file system, etc) and

provides powerful abstractions of the underlying hardware. Amount of context switches

and messaging involved are greatly reduced which makes it run faster than microkernel.

· Microkernel

It runs only basic process communication (messaging) and I/O control. It normally

provides only the minimal services such as managing memory protection, Inter process

communication and the process management. The other functions such as running the

hardware processes are not handled directly by microkernels. Thus, micro kernels

provide a smaller set of simple hardware abstractions. It is more stable than monolithic

as the kernel is unaffected even if the servers failed (i.e.File System). Microkernels are

part of the operating systems like AIX, BeOS, Mach, Mac OS X, MINIX, and QNX. Etc

· Hybrid Kernel

Hybrid kernels are extensions of microkernels with some properties of monolithic

kernels. Hybrid kernels are similar to microkernels, except that they include additional

code in kernel space so that such code can run more swiftly than it would were it in user

space. These are part of the operating systems such as Microsoft Windows NT, 2000

and XP. DragonFly BSD, etc

· Exokernel

Exokernels provides efficient control over hardware. It runs only services protecting the

resources (i.e. tracking the ownership, guarding the usage, revoking access to

resources, etc) by providing low-level interface for library operating systems and leaving

the management to the application.

Unit-V OS Case Study -RTOS

Six types of common services are shown in the following figure below and explained in

subsequent sections

B) Task Management

· Task Object

In RTOS, The application is decomposed into small, schedulable, and sequential program units

known as “Task”, a basic unit of execution and is governed by three time-critical properties;

release time, deadline and execution time. Release time refers to the point in time from which

the task can be executed. Deadline is the point in time by which the task must complete.

Execution time denotes the time the task takes to execute.

Unit-V OS Case Study -RTOS

Fig. 5: A Diagram Illustrating Use of RTOS for Time Management Application

Each task may exist in following states

· Dormant : Task doesn’t require computer time

· Ready: Task is ready to go active state, waiting processor time

· Active: Task is running

· Suspended: Task put on hold temporarily

· Pending: Task waiting for resource.

C) Synchronisation and communication

Task Synchronisation & intertask communication serves to pass information amongst

tasks.

· Task Synchronisation

Synchronization is essential for tasks to share mutually exclusive resources (devices,

buffers, etc) and/or allow multiple concurrent tasks to be executed (e.g. Task A needs a

result from task B, so task A can only run till task B produces it).

Task synchronization is achieved using two types of mechanisms:

· Event Objects

Event objects are used when task synchronization is required without resource sharing.

They allow one or more tasks to keep waiting for a specified event to occur. Event

Unit-V OS Case Study -RTOS

object can exist either in triggered or non-triggered state. Triggered state indicates

resumption of the task.

· Semaphores.

A semaphore has an associated resource count and a wait queue. The resource count

indicates availability of resource. The wait queue manages the tasks waiting for

resources from the semaphore. A semaphore functions like a key that define whether a

task has the access to the resource. A task gets an access to the resource when it

acquires the semaphore.

There are three types of semaphore:

· Binary Semaphores

· Counting Semaphores

· Mutually Exclusion(Mutex) Semaphores

Semaphore functionality (Mutex) represented pictorially in the following figure

Fig. 12: A Diagram Showing Architecture of Semaphore Functionality

· Intertask communication

Intertask communication involves sharing of data among tasks through sharing of

memory space, transmission of data, etc. Intertask communications is executed using

following mechanisms

Unit-V OS Case Study -RTOS

· Message queues – A message queue is an object used for intertask communication

through which task send or receive messages placed in a shared memory. The queue

may follow 1) First In First Out (FIFO), 2) Last in First Out(LIFO) or 3) Priority (PRI)

sequence. Usually, a message queue comprises of an associated queue control block

(QCB), name, unique ID, memory buffers, queue length, maximum message length and

one or more task waiting lists. A message queue with a length of 1 is commonly known

as a mailbox.

Fig. 13: A Diagram Showing Flow of a Message Queue in a Mailbox

· Pipes – A pipe is an object that provide simple communication channel used for

unstructured data exchange among tasks. A pipe does not store multiple messages but

stream of bytes. Also, data flow from a pipe cannot be prioritized.

· Remote procedure call (RPC) – It permits distributed computing where task can

invoke the execution of another task on a remote computer.

D) Memory Management

Two types of memory managements are provided in RTOS – Stack and Heap.

Stack management is used during context switching for TCBs. Memory other than

memory used for program code, program data and system stack is called heap memory

and it is used for dynamic allocation of data space for tasks. Management of this

memory is called heap management.

Unit-V OS Case Study -RTOS

E) Timer Management

Tasks need to be performed after scheduled durations. To keep track of the delays,

timers- relative and absolute- are provided in RTOS.

F) Interrupt and event handling

RTOS provides various functions for interrupt and event handling, viz., Defining interrupt

handler, creation and deletion of ISR, referencing the state of an ISR, enabling and

disabling of an interrupt, etc. It also restricts interrupts from occurring when modifying a

data structure, minimise interrupt latencies due to disabling of interrupts when RTOS is

performing critical operations, minimises interrupt response times.

G) Device I/O Management

RTOS generally provides large number of APIs to support diverse hardware device

drivers

Unit-V OS Case Study -RTOS

Popular RTOS

POPULAR RTOS

There are number of commercially available RTOS, each with some distinct features and

targeted for a specific set of applications. Following table lists some of the widely used

commercially available RTOS.

RTOS Applications/Features

Windows CE Used for Small footprint, mobile and connected devices

Supported by ARM,MIPS, SH4 & x86 architectures

LynxOS Complex, hard real-time applications

POSIX-compatible, multiprocess, multithreaded OS.

Supported by x86, ARM, PowerPC architectures

VxWorks Most widely adopted RTOS in the embedded industry.

Used in famous NASA rover robots Spirit and Opportunity

Certi?ed by several agencies and international standards for real time

systems, reliability and security-critical applications.

Micrium µC/OS-

II

Ported to more than a hundred architectures including x86, mainly used in

microcontrollers with low resources.

certi?ed by rigorous standards, such as RTCADO-178B

QNX Most traditional RTOS in the market.

Microkernel architecture; completely compatible with the POSIX

Certi?ed by FAADO-278 and MIL-STD-1553 standards.

RT Linux Hard realtime kernel

Good real time performance, but no certification

Jbed Developed for embedded systems and Internet applications under the

Java platform.

Unit-V OS Case Study -RTOS

 Allows an entire application including the device drivers to be written

using Java

Symbian Designed for Smartphones

Supported by ARM, x86 architecture

VRTX Suitable for traditional board based embedded systems and SoC

architectures

Supported by ARM, MIPS, PowerPC & other RISC architectures

22.. OOppeerraattiinngg SSyysstteemm
CCaassee SSttuuddyy:: LLiinnuuxx

1

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Reference

⚫ S.M. Sarwar, R. Koretsky and S.A. Sarwar, Linux –

The Textbook, Addison Wesley, 1st ed, 2002

2

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Features of modern OS

⚫ To facilitate easy,
efficient, fair, orderly,
and secure use of
resources

– Provide a user
interface

– Organize files on disk

– Allocating resource to
different users with
security control

– Co-ordinate programs
to work with devices
and other programs

3

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Case study: Linux

A. Development of Linux

4

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ Before Linux

– In 80’s, Microsoft’s DOS was the dominated OS for

PC

– single-user, single-process system

– Apple MAC is better, but expensive

– UNIX is much better, but much much expensive.

Only for minicomputer for commercial applications

– People was looking for a UNIX based system, which

is cheaper and can run on PC

– Both DOS, MAC and UNIX are proprietary, i.e., the

source code of their kernel is protected

– No modification is possible without paying high

5 license fees

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ GNU project

– Established in 1984 by Richard Stallman, who

believes that software should be free from restrictions

against copying or modification in order to make

better and efficient computer programs

– GNU is a recursive acronym for “GNU's Not Unix”

– Aim at developing a complete Unix-like operating

system which is free for copying and modification

– Companies make their money by maintaining and

distributing the software, e.g. optimally packaging the

software with different tools (Redhat, Slackware,

Mandrake, SuSE, etc)

– Stallman built the first free GNU C Compiler in 1991.

6 But still, an OS was yet to be developed

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ Beginning of Linux

– A famous professor Andrew Tanenbaum developed

Minix, a simplified version of UNIX that runs on PC

– Minix is for class teaching only. No intention for

commercial use

– In Sept 1991, Linus Torvalds, a second year student

of Computer Science at the University of Helsinki,

developed the preliminary kernel of Linux, known as

Linux version 0.0.1

– It was put to the Internet and received

enormous response from worldwide

software developers

– By December came version 0.10. Still

7 Linux was little more than in skeletal form.

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ Confrontation and Development

– Message from Professor Andrew Tanenbaum

– " I still maintain the point that designing a monolithic kernel in

1991 is a fundamental error. Be thankful you are not my

student. You would not get a high grade for such a design :-)"

(Andrew Tanenbaum to Linus Torvalds)

– "Linux is obsolete".

(Remark made by Andrew Tanenbaum)

– But work went on. Soon more than a hundred people

joined the Linux camp. Then thousands. Then

hundreds of thousands

– It was licensed under GNU General Public License,

thus ensuring that the source codes will be free for all

8 to copy, study and to change.

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ Linux Today

– Linux has been used for many computing platforms

– PC, PDA, Supercomputer,…

– Current kernel version 2.6.13

– Not only character user interface but graphical user

interface, thanks to the X-Window technology

– Commercial vendors moved in Linux itself to provide

freely distributed code. They make their money by

compiling up various software and gathering them in a

distributable format

– Red Hat, Slackware, etc

– Chinese distribution of Linux also appeared in Taiwan

and China - CLE, Red Flag Linux
9

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Linux Pros and Cons

⚫ Advantages over Windows

– It's almost free to relatively inexpensive

– Source code is included

– Bugs are fixed quickly and help is readily available

through the vast support in Internet

– Linux is more stable than Windows

– Linux is truly multi-user and multi-tasking

– multiuser: OS that can simultaneously serve a number of users

– multitasking: OS that can simultaneously execute a number of

programs

– Linux runs on equipment that other operating systems

10 consider too underpowered, e.g. 386 systems, PDA, etc

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Linux Pros and Cons (Cont)

⚫ Disadvantages compared with Windows

– Isn't as popular as Windows

– No one commercial company is responsible for Linux

– Linux is relatively hard to install, learn and use

⚫ Hence currently, Linux is mainly used in

commercial applications, server implementation

⚫ More than 75% current network servers are

developed based on Linux or Unix systems

11 – Due to the relatively high reliability

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Case study: Linux

B. Linux System Architecture

12

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

AUI

API

Applications: Compilers, word processors, X-based GUI

LINUX Shell: Bourne Again (bash), TC, Z, etc.

Language libraries

System call interface

Kernel
Device Drives

BIOS

Computer Hardware

13

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Process

Management

File

management

Memory

management

⚫ Kernel

– The part of an OS where the real work is done

⚫ System call interface

– Comprise a set of functions (often known as

Application Progarmmer’s Interface API) that can be

used by the applications and library routines to use

the services provided by the kernel

⚫ Application User’s Interface

– Interface between the kernel and user

– Allow user to make commands to the system

– Divided into text based and graphical based

14

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ File Management
– Control the creation, removal of files and provide directory

maintenance

– For a multiuser system, every user should have its own right to

access files and directories

⚫ Process Management
– For a multitask system, multiple programs can be executed

simultaneously in the system

– When a program starts to execute, it becomes a process

– The same program executing at two different times will become

two different processes

– Kernel manages processes in terms of creating, suspending,

and terminating them

– A process is protected from other processes and can

15 communicate with the others

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ Memory management

– Memory in a computer is divided into main memory

(RAM) and secondary storage (usually refer to hard disk)

– Memory is small in capacity but fast in speed, and hard

disk is vice versa

– Data that are not currently used should be saved to hard

disk first, while data that are urgently needed should be

retrieved and stored in RAM

– The mechanism is referred as memory management

⚫ Device drivers

– Interfaces between the kernel and the BIOS

– Different device has different driver

16

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Case study: Linux

B.1 User interface

17

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Linux User Login
⚫ Linux is a multiuser OS

⚫ Allow multiple users to use the resource of a computer at

the same time

⚫ Every user needs to login the system with the password

provided to identify their right in using the resource

⚫ Require for both client-server based system or desktop

Peter: admin
Paul : general
Mary : intruder

18
:

Linux

Server Peter
Mary

Paul

Client-server based

system

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Linux User Interface

⚫ Traditional Linux (Unix also) uses command-

driven interface (or text-based interface)

– User needs to type lines of command to instruct the

computer to work, similar to DOS

– Advantage: fast in speed. Very few resource is

required for its implementation

– Disadvantages: user needs to type, hence can

easily make error. Besides, user needs to memorize

all commands

– Suitable for expert users and for the systems that

interaction with user is not frequent, such as servers
19

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ By adopting the X-Window technology, graphical user
interface (GUI) is available for Linux:

– Uses pointing devices (e.g. mouse) to control the
system, similar to Microsoft’s Windows

– Provide menu-driven and/or icon-driven interfaces

– menu-driven: user is provided with a menu of
choices. Each choice refers to a particular task

– icon-driven: tasks are represented by pictures
(icon) and shown to user. Click on an icon
invokes one task

– Advantages: No need to memorize commands.
Always select task from menus or icons

– Disadvantages: Slow and require certain resource
for its implementation

20 – Suitable for general users and systems, such as PC

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

• A typical Linux GUI based on

GNOME

• Similar to Microsoft’s Windows,

however, different window systems can

be chosen (e.g. GNOME, KDE, etc)

• A typical Linux GUI based on

GNOME

• Similar to Microsoft’s Windows,

however, different window systems can

be chosen (e.g. GNOME, KDE, etc)

21

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Linux text-based interface Linux text-based interface

command to show the

content of current directory

The prompt $ shows

that bash shell is using

command to show the

content of current directory

22 with option -al

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Linux Shell
⚫ Shell interprets the command

and request service from

kernel

⚫ Similar to DOS but DOS has

only one set of interface while

Linux can select different shell
– Bourne Again shell (Bash), TC

shell (Tcsh), Z shell (Zsh)

⚫ Different shell has similar but different functionality

⚫ Bash is the default for Linux

⚫ Graphical user interface of Linux is in fact an application

program work on the shell
23

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

ls pwd

Bash, Tcsh, Zsh

Kernel

whoami

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ Frequently used commands available in most shells:

– ls : to show (list) the names of the file in the current
directory

– cd : change directory,
– e.g. cd / change to the root directory

cd .. change to the parent of that directory

– cp : copy one file to another
– e.g. cp abc.txt xyz.txt copy abc.txt to xyz.txt

– rm : remove a file

– man : ask for the manual (or help) of a command
– e.g. man cd ask for the manual of the command cd

– pwd : show the name of the present working directory

– cat : to show the content of a text file
– e.g. cat abc.txt show the content of abc.txt

24
– whoami : to show the username of the current user

Case study: Linux

B.2 File management

25

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Linux File Management

⚫ In Linux, file is defined as simply the thing that

deals with a sequence of bytes

⚫ Hence everything are files

– An ordinary file is a file; a directory is also file; a
network card, a hard disk, any device are also files
since they deal with a sequence of bytes

⚫ Linux supports five types of files

– simple/ordinary file (text file, c++ file, etc)

– directory

– symbolic (soft) link

– special file (device)
26 – named pipe (FIFO)

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

The concept of simple file and

directory is similar to DOS

Names in blue are directories, indicated
27 by a letter d at the beginning of the line

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ Symbolic (soft) link

– Not a real file, just a link to another file

– Allow giving another name to a file without actually
duplicates it – hence save memory space

⚫ Special file (device)

– Each hardware device, e.g. keyboard, hard disk,
CD-ROM, etc is associated with at least one file

– Usually store in /dev directory

– Applications can read and write any devices by
reading and writing their associate file – hence the
access method is known as device independent

– Divide into two types: character special files, e.g.
keyboard, and block special files, e.g. disk

28

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Command that sets a

symbolic link to a file

called CUI to anotherCUI

 File size is only 6 bytes

 A symbolic link begins with a letter l

29

0

Some are

character

devices, hence

start with a

letter c
3

Some of the special device files in /dev

fd0 – floppy disk

md0 – CD-Rom

Both of them are block devices, hence

start with a letter b

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

bin lib lost+found mnt opt root sbin var

boot dev etc proc home tmp usr

Linux File System Structure

⚫ According to the File System Standard (FSSTND)

proposed in 1994, every LINUX system should

contain a set of standard files and directories

directories

31

fd hd hd

group passwd

file

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

… guest dlun local lib bin

root /

⚫ Root Directory (/)

– Top of the file system. Similar to \ in DOS

⚫ /bin

– Contain the binary (executable code) of most
essential Linux commands, e.g. bash, cat, cp, ln, ls,
etc.

⚫ /boot

– Contain all the files needed to boot the Linux system,
including the binary of the Linux kernel. E.g., on Red
Hat Linux 6.1, the kernel is in /boot/vmlinux-2.2.5-15
file

⚫ /dev
– Contain the special files for devices, e.g. fd0, hd0, etc.

32

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

login_name : dummy_or_encrypted_password : user_ID :

group_ID : user_info : home_directory : login_shell

⚫ /etc

– Contain host-specific files and directories, e.g.
information about system configuration

– /etc/passwd

– This file contains login information of users in the
system

– For every user, one line of record is stored in the
following format:

33

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ E.g. davis:x:134:105:James A Davis:/home/davis:/bin/bash

– davis : login name

– x : means that it is a dummy password. The encrypted
password is stored in /etc/shadow. This field can also be
used to store the actual encrypted password. In any
case, the original (unencrypted) password cannot be
seen by anyone, including the administrator

– 134 : a user id given to that user. Range from 0 to 65535.
0 is assigned to super-user. 1 to 99 are reserved

– 105 : a group id given to that user to indicate which
group he belongs to. Range from 0 to 65535. 0 to 99
reserved

– James A Davis : user info, usually user’s full name

– /home/davis : home directory of the user

34 – /bin/bash : the location of the shell the user is using

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ /home

– Contain the home directories of every user in the
system, e.g. dlun, guest, etc

⚫ /lib

– Store all essential libraries for different language
compilers

⚫ /lost+found
– Contain all the files on the system not connected to

any directory.

– System administrator should determine the fate of
the files in this directory

35

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ /mnt

– Use by system administrator to mount file systems
temporarily by using the mount command

– Before using any devices, they have to be mounted
to the system for registration

– For example, after mounting a CD-ROM, the file
system in it will be mapped to /mnt/cdrom directory

– User can then read and write files in the CD-ROM
by accessing this directory

– Similar to mapping a drive letter to a CD-ROM in
Windows

– Different from the special file in /dev. Special file is
only a place where data of the CD-ROM is
transferred or stored. No file system concept

36

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ /opt

– Use to install add-on software packages, e.g. star
office, etc.

⚫ /proc

– Contain process and system information

⚫ /root
– Home directory of the user root, usually the

administrator

⚫ /sbin

– The directories /sbin, /usr/sbin, and /usr/local/sbin
contain system administration tools, utilities and
general root only commands, such as halt, reboot
and shutdown

37

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ /tmp

– Contain temporary files. Usually files in this directory
will be deleted from time to time to avoid the system
fills with temp files

⚫ /usr

– One of the largest sections of the Linux file system

– Contain read-only data that are shared between
various users, e.g. the manual pages needed for the
command man. Stored in /usr/man direcrtory

⚫ /var

– Contain data that keeps on changing as the system
is running. E.g. /var/spool/mail directory keeps the
mail of user

38

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Linux File Access Privilege
⚫ Linux is a multiuser system, the files of all

users are stored in a single file structure

⚫ Mechanism is required to restrict one user to

access the files of another user, if he is not

supposed to

⚫ User can impose access permission to each

file to restrict its access

⚫ The term “access permission” refers to

– read permission

– write permission

39 – execute permission

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

The file access permission can be seen

by using the command ls –l or ls -al

40

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Hard

link no

Owner
Owner’s

group

File last

modified date

d rwx r-x r-x 2 dlun dlun 4096 May 17 2001 Autostart

It is a

directory
file size file name

The directory

can be read,

written and

executed by the

user dlun

The directory can be

read and executed

but not written by

other users in the

same group of dlun

The directory can be

read and executed but

not written by other

users in different

group of dlun

41
The group of a user is assigned by the administrator when a

user is added to the system

⚫ Access permission can also be assigned to a

directory

⚫ Directory is also a file that contains the attributes

of the files inside it

⚫ If read permission is not given to a directory

– cannot show the structure of this directory

– e.g. cannot use ls

⚫ If write permission is not given to a directory

– cannot modify anything of the directory structure

– e.g. cannot copy a file into this directory since it will
modify the directory structure by adding one more file

⚫ If execute permission is not given to a directory
42 – nearly nothing can be done with this directory, even cd

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ The access permission of a file or directory can

be changed by using the command

chmod xyz filename/directory name

⚫ xyz refers 3 digit in octal form

⚫ E.g.

660 : 110 110 000

 rw- rw- ---

545 : 101 100 101

 r-x r-- r-x

43

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

44

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

 temp does not have execution right

 even cd is not workable

 execution right is added

 now we can change the directory to temp

File Storage in Linux

⚫ Data storage on hard disk

– Data in a hard disk are stored on a magnetic flat plate

– Disk’s surface needs to be partitioned and labeled so

that computer can go directly to a specific point on it

– Achieve by low level formatting the disk

⚫ Create magnetic concentric circles called tracks

⚫ Each track is split into smaller parts called sectors and

numbered

⚫ Each sector: hold 512 bytes data

⚫ E.g. 80 tracks (from outer to inner 0 .. 79), 18 sectors disk can

store 80x18x512 bytes data.

45

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Formatted Disk

Sector

Track

Density of data is

higher for inner tracks

than outer tracks

46

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ Must read or write whole sector at a time

⚫ OS allocates groups of sectors called cluster to

files

⚫ Files smaller than the cluster will still be allocated

the whole cluster, but the rest left unused

⚫ In Linux, every file is associated with an inode that

records its location in the disk

⚫ The inode of all files are put together in a data

structure called inode table

⚫ In the directory, every file is associated with a

inode number that points to an entry of the inode
47 table

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

b2.c

Contents of the directory /home/dlun

48

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

:

:

Lab1.c

Number of links

File mode

User ID

Time created

Time last updated

:

Location on disk

1076 …

2083 …

13059 lab1.c

17488 lab2.c

18995 lab3.c

La Lab3 .c

Case study: Linux

B.3 Process management

49

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Linux Process Management

⚫ Linux is a multitasking system

⚫ Multiple programs can be executed at the same

time

⚫ Ultimately, a program needs to be executed by a

CPU

⚫ If there is only one CPU, how multiple programs

can be executed at the same time?

 By time sharing

⚫ That is, all programs are claimed to be executing.

50 In fact, most of them are waiting for the CPU

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ A program that is claimed to be executing is

called a process

⚫ For a multitasking system, a process has at least

the following three states:

Start

execution Ready Running
Finish

execution

Sleeping

51

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ Ready state

– All processes that are ready to execute but without

the CPU are at the ready state

– If there is only 1 CPU in the system, all processes

except one are at the ready state

⚫ Running state

– The process that actually possesses the CPU is at the

running state

– If there is only 1 CPU in the system, at most there is

only one process is at the running state

⚫ Sleeping state

– The process that is waiting for other resources, e.g.

52 I/O, is at the sleeping state

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ Processes will alternatively get into the CPU one after the

other (called the round robin scheme)

⚫ A process will be “in” a CPU for a very short time (quantum)

– For Linux, each quantum is about 100msec

⚫ At the time that a process is selected to be “in” the CPU

– It goes from ready state to running state

⚫ After that, it will be swapped out

– It goes from running state back to ready state

⚫ Or it may due to the waiting of an I/O device, e.g. mouse

– It goes from running state to sleeping state

⚫ When obtaining the required resource

– It goes from sleeping state to ready state

53

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

54

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ The mechanism to determine which process should “get

into” the CPU is called Process scheduling

⚫ For example,

Program A Actual sequence of operations

55

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

Actual sequence of operations

Program B

56

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ Program A and B will be at the running state alternatively,

depends on the quantum size and the availability of the

required resource

Quantum

end

Waiting for

user input

Progra

A

finishes

Quantum

end

Waiting for
5u7ser input

Program

B

finishes

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

m

Terminal pts/0 has the editor vi
running

Terminal pts/1 is

executing ps to see

the processes of both

terminals

58

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

The processes of a system can

be seen by using the command

ps

PID TTY STAT TIME COMMAND

14748 pts/1 S 0:00 –bash

14795 pts/0 S 0:00 –bash

14974 pts/0 S 0:00 vi test1.txt

14876 pts/1 R 0:00 ps …

Process ID Terminal

State:

How much time the

process is continuously

executing

name

59

S – Sleeping

(waiting for input)

R – Running

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ For the example above, both bash processes,

which are the shell of both terminals, are

waiting for the input of user. They must be in

the sleeping state

⚫ The vi process, which is an editor, is also

waiting for the input of user. Hence it is also

in sleeping state

⚫ When ps reporting the processes in the

system, it is the only process that is running.

Hence it is in running state

60

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

⚫ A process can be forced to terminate by using

the command kill -9 PID

The vi process is terminated by using the command
61 kill -9 14874

ENG224

INFORMATION TECHNOLOGY – Part I

2. Operating System Case Study: Linux

