
1

Department of Electrical Engineering

Embedded System Lab Manual

Year: -4thYr. /VII SEM

Lab Code: - 7EE4-21

2

INDEX

SR.
NO.

TOPIC
PAGE

NUMBER

1. Vision & Mission of Electrical Engineering Department 3

2. Program Educational Objectives (PEO’s) of PCE 4

3. Program Outcomes(PO’s) of Department 4

4. Program Specific Outcomes(PSO’s) of Department 6

5. Lab Outcomes 6

6. Mapping of PO’s and PSO’s with LO’s 7

7. Lab Rules 8

8. Safety Measures 9

9. Experiment List (as per RTU) 10

10. Evaluation Scheme 11

11. Lab Plan 12

12. Rotor plan 13

13. Zero Lab 14

14. Experiment 1 15

15. Experiment 2 18

16. Experiment 3 21

17. Experiment 4 24

18. Experiment 5 28

19. Experiment 6 30

20. Experiment 7 33

21. Experiment 8 35

22. Experiment 9 37

23. Experiment 10 44

24. Experiment 11 49

25. Experiment 12 51

26. Experiment 13 53

27. Experiment 14 55

28. Experiment 15 59

29. Experiment 16 61

30. Experiment 17 67

POORNIMA COLLEGE OF ENGINEERING, JAIPUR

DEPARTMENT OF ELECTRICAL ENGINEERING

3

VISION

To be a model of excellence in Professional Education and Research by creating electrical engineers

who are prepared for lifelong engagement in the rapidly changing fields and technologies with the

ability to work in team.

MISSION

 To provide a dynamic environment of technical education wherein students learn in

collaboration with others to develop knowledge of basic and engineering sciences.

 To identify and strengthen current thrust areas based upon informed perception of global

societal issues in the electrical and allied branches.

 To develop human potential with intellectual capability who can become a good professional,

researcher and lifelong learner.

4

PROGRAM EDUCATIONAL OBJECTIVES (PEO’s)

PEO 1: Graduates will have the ability to formulate, analyze and apply design process using the

basic knowledge of engineering and sciences to solve complex electrical engineering problems.

PEO 2: Graduates will exhibit quality of leadership, teamwork, time management, with a

commitment towards addressing societal issues of equity, public and environmental safety using

modern engineering tools.

PEO 3: Graduates will possess dynamic communication and have successful transition into a broad

range of multi-disciplinary career options in industry, government and research as lifelong learner.

PROGRAM OUTCOMES (PO’s)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and

an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and

engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design

system components or processes that meet the specified needs with appropriate consideration for the

public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods

including design of experiments, analysis and interpretation of data, and synthesis of the information to

provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities with an

understanding of the limitations.

5

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,

health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional

engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the

engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse

teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports and

design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and

management principles and apply these to one’s own work, as a member and leader in a team, to

manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

6

PROGRAM SPECIFIC OUTCOMES (PSO’s)

PSO1: Graduate possesses the ability to apply fundamental knowledge of basic sciences,

mathematics and computation to solve the problems in the field of electrical engineering for the

benefit of society.

PSO2: Graduate possesses the ability to professionally communicate and ethically solve complex

electrical engineering problems using modern engineering tools.

PSO3: Graduate possesses sound fundamental knowledge to be either employable or develop

entrepreneurship in the emerging areas of renewable and green energy, electric and hybrid vehicles

and smart grids and shall be susceptive to life- long learning.

LAB OUTCOMES

LO1: Explain the fundamentals of embedded system and sensor integration. [Understand]

LO2: Practice the programming knowledge for controlling a real time process using hardware

in loop system. [Apply]

LO3: Investigate the type of sensor required in a particular control process. [Analyze]

LO4: Criticize the processing time requirements for conversion of real time data into digital

domain and vice versa. [Analyze]

LO5: Check the complex real world embedded system processes. [Evaluate]

7

MAPPING OF LO WITH PO

LO LAB OUTCOME PO

 1 2 3 4 5 6 7 8 9 10 11 12

1

Student will be able to Explain the
fundamentals of embedded system and
sensor integration. [Understand]

2

-

-

-

3

-

-

3

3

2

1

3

2

Student will be able to Practice the
programming knowledge for controlling a
real time process using hardware in loop
system. [Apply]

2

-

-

-

3

-

-

3

3

2

1

3

3

Student will be able to Investigate the
type of sensor required in a particular
control process. [Analyze]

2

-

-

2

3

-

-

3

3

2

1

3

4 Student will be able to Criticize the
processing time requirements for
conversion of real time data into digital
domain and vice versa. [Analyze]

5

Student will be able to Check the complex
real world embedded system processes.
[Evaluate]

2

-

-

3

3

-

-

3

3

2

1

3

MAPPING OF LO WITH PSO

LO LAB OUTCOME PSO1 PSO2 PSO3

1
Student will be able to Explain the fundamentals of embedded
system and sensor integration. [Understand]

1 - -

2
Student will be able to Practice the programming knowledge for
controlling a real time process using hardware in loop system.
[Apply]

- - -

3
Student will be able to Investigate the type of sensor required in
a particular control process. [Analyze]

- - -

4
Student will be able to Criticize the processing time requirements
for conversion of real time data into digital domain and vice
versa. [Analyze]

- - -

8

DO’S:

LAB RULES

 Enter the lab on time and leave at proper time.

 Wait for the previous class to leave before the next class enters.

 Keep the bag outside in the respective racks.

 Utilize lab hours in the corresponding.

 Before switching on the power supply, get it checked by the lecturer/Technical assistant.

 Switch off or silent your mobile before enter the lab.

 Maintaining discipline.

 Proper handling of equipment must be done.

DONT’S:

 Don't abuse the equipment.

 Don’t bring any external material in the lab, except your lab record, copy and books.

 Don’t bring the mobile phones in the lab. If necessary then keep them in silence mode.

 Please be considerate of those around you, especially in terms of noise level. While labs are a

natural place for conversations of all types, kindly keep the volume turned down.

 Do not touch any any power supply wire or main supply.

 Do not attempt experiment without permission.

 Do not overcrowd on a table.

 Do not manipulate the experiment result.

SAFETY MEASURES

9

 Specific Safety Rules like Do’s and Don’ts are displayed and instructed for all students.

 First aid box and fire extinguishers are kept in each laboratory.

 Insulation carpet is available in machine lab and Measurement and Instrumentation Lab.

 Well trained technical supporting staff monitor the labs at all times.

 Damaged equipment’s are identified and serviced at the earliest.

 Periodical calibration of the lab equipment’s are regularly done

 A clean and organized laboratories are maintained

 The use of cell phones is prohibited.

 Appropriate storage areas are available.

 In order to create more space in the laboratories, a separate section has racks to store the

belongings of the students.

 Proper earthing is provided in the labs.

LIST OF EXPERIMENTS

10

Max. Marks=100

SN Contents

1 Introduction to Embedded Systems and their working.

2 Data transfer instructions using different addressing modes and block
trans- fer.

3 Write a program for Arithmetic operations in binary and BCD-addition, sub-
traction, multiplication and division and display.

4 Interfacing D/A converter & Write a program for generation of simple wave-
forms such as triangular, ramp, Square etc.

5 Write a program to interfacing IR sensor to realize obstacle detector.

6 Write a program to implement temperature measurement and displaying the
same on an LCD display.

7 Write a program for interfacing GAS sensor and perform GAS leakage detec-
tion.

8 Write a program to design the Traffic Light System and implement the same
using suitable hardware.

9 Write a program for interfacing finger print sensor.

10 Write a program for Master Slave Communication between using suitable
hardware and using SPI

11 Write a program for variable frequency square wave generation using with
suitable hardware.

12 Write a program to implement a PWM based speed controller for 12 V/24V
DC Motor incorporating a suitable potentiometer to provide the set point.

EVALUATION SCHEME

11

Name Of Exam Conducted By Experiment

Marks

Viva Marks Total

I Mid Term PCE 30 10 40

II Mid Term PCE 30 10 40

End Term RTU 30 10 40

Name Of Exam Conducted By
Performance

Marks

Attendance

Marks
Total

Sessional PCE 30 10 40

DISTRIBUTION OF LAB RECORD MARKS

PER EXPERIMENT

Attendance Record Performance Total

2 3 5 10

LAB PLAN

12

Total number of experiment: 12

Total number of turns required: 12

NUMBER OF TURNS REQUIRED FOR

Experiment Number Turns Scheduled Day

Zero Lab 1 Turn 1

Exp. 1 1 Turn 2

Exp. 2 1 Turn 3

Exp. 3 1 Turn 4

Exp. 4 1 Turn 5

Exp. 5 1 Turn 6

Exp. 6 1 Turn 7

Exp. 7 1 Turn 8

Exp. 8 1 Turn 9

Exp. 9 1 Turn 10

Exp. 10 1 Turn 11

Exp. 11 1 Turn 12

Exp. 12 1 Turn 13

DISTRIBUTION OF LAB HOURS

 Explanation of Experiment & Logic : 20 Minutes

 Performing the Experiment : 40 Minutes

 File Checking : 30 Minutes

 Viva/Quiz : 20 Minutes

 Solving of Queries : 10 Minutes

ROTOR PLAN

13

ROTOR I

1. Introduction to Embedded Systems and their working

2. Data transfer instructions using different addressing modes and block transfer.

3. Write a program for Arithmetic operations in binary and BCD-addition, sub- traction,

multiplication and division and display.

4. Interfacing D/A converter & Write a program for generation of simple wave- forms such

as triangular, ramp, Square etc.

5. Write a program to interfacing IR sensor to realize obstacle detector.

6. Write a program to implement temperature measurement and displaying the same on an

LCD display.

ROTOR II

7. Write a program for interfacing GAS sensor and perform GAS leakage detection.

8. Write a program to design the Traffic Light System and implement the same using suitable

hardware.

9. Write a program for interfacing finger print sensor..

10. Write a program for Master Slave Communication between using suitable hardware and

using SPI

11. Write a program for variable frequency square wave generation using with suitable

hardware.

12. Write a program to implement a PWM based speed controller for 12 V/24V DC Motor

incorporating a suitable potentiometer to provide the set point.

14

ZERO LAB

Introduction to Lab:

a). Relevance to Branch: - Embedded system are used in industrial control applications which is a

very important field for Electrical Engineers as the devices that requires timing and control use

microprocessors. Electrical Engineers basically deal with the power electronics and control panels

to control the amount of load to be delivered to the different sections. Computer Architecture deals

with the memory elements of computer and its organization which is again very useful and relevant

for electrical engineering branch.

b). Relevance to Society: - Looking into the present arena of faster and faster devices most of

which are based on the microprocessors, it becomes very important for Engineers to develop newer

and portable devices for the society and that can be done by including the subject in the curriculum

as a basis for that .

c). Relevance to Self: - It helps the students to acquire knowledge of both the hardware and the

software. It is a very important subject for Competitive exams like GATE, PSUs and many other

and most important for securing marks in university exams. It is very useful in building the projects.

d). Relation with laboratory: - :- Lab is important to get practical knowledge of what we study in

theory. This Lab is related to the Microprocessor Programming Lab.

e) Pre- Requisites (Connection with previous year): -

1. Electronic Devices Lab (3EE7A)

2. Analog Electronics Lab (4EE7A)

3. Microprocessor Lab (5EE4-23)

4. Power Electronics Lab (5EE7A)

5. Advanced Power electronics Lab (6EE9A)

Experiment No : 1

Introduction to Embedded Systems

and their working.

DEPARTMENT OF ELECTRICAL ENGINEERING

EMBEDDED SYSTEM LAB

Poornima College of Engineering Introduction to Embedded Systems and their working..

DEPARTMENT OF ELECTRICAL ENGINEERING Embedded System Lab Manual P a g e | 1

AIM

THEORY

To study 8051Microcontroller.

The 8051 Microcontroller includes a whole family of microcontrollers that have numbers ranging

from 8031to 8051 and are available in N channel metal oxide silicon (NMOS) and complementary

metal oxide silicon (CMOS) construction in a variety of package types. There exits a enhanced

version of 8051 known as 8052 with its own family of variations and even includes one member that

can be programmed in BASIC.

Architecture

From internal block diagram of 8051 we see the unique features of the microcontroller are :

i) Internal ROM AND RAM.

ii) I/O port with programmable pins.
iii) Timers and counters.
iv) Serial data communication.

The figure also shows usual CPU component which are as follows:

The program counter, Arithmetic Logic Unit, working registers and clock circuits.

The 8051 architecture consists of these specific features:

i) Eight bit CPU with registers A (accumulator) & B.
ii) Sixteen bit program counter (PC) and data pointer (DPTR)
iii) Eight bit program status word(PSW)
iv) Internal ROM or EPROM (8751) of 0 (8031) to 4k (8051)

v) Eight bit stack pointer (SP).
vi) Internal RAM of 128 bytes.

a) Four register banks, each containing 8 registers.
b) Sixteen bytes may be addressed at bit level.

c) Eighty bytes of general purpose data memory.
vii) Thirty two input output pins arranged as four, eight bit ports Po-P3
viii) Two 16 bits timer/counter To-T1
ix) The duplex serial data receiver /transmitter.(SBUF)

x) Control registers: TCON, TMOD, SCON, PCON, IP& IE.
xi) Two external and three internal interrupt sources.
xii) Oscillator and clock circuits.

The hardware of 8051 consists of following main parts.

1) The 8051 oscillator and clock.
The heart of 8051 is the circuitry that generates the clock pulses by which all internal operations are

synchronized. Pins XTAL1 & XTAL2 are provided to connect a resonant network to form an oscillator.

TITLE : Introduction to Embedded Systems and their working.

E x p
 e

 r i m
 e

 n
 t

N
 o

:

1

Poornima College of Engineering Introduction to Embedded Systems and their working..

DEPARTMENT OF ELECTRICAL ENGINEERING Embedded System Lab Manual P a g e | 2

Typically a quartz crystal and capacitor are employed. The crystal frequency is basic internal clock

frequency of microcontroller.

The 8051 is normally available with certain maximum and minimum frequency typically 1 MHz to 16

MHz. Minimum frequency imply that certain internal memories are dynamic and must always

operate above a minimum frequency otherwise all data will be lost.

Ceramic resonators may be used as low cost alternative to crystal resonators. However, a decrease

in frequency stability and accuracy make the ceramic resonator a poor choice of high speed serial

data communication with other systems, or, critical timing, is to be done. The ALE pulse which is

primarily used as a timing pulse for external memory access, in dictates when every instruction byte

is fetched.

2) Program counter and data pointer (PC & DPTR)

The 8051 contains two 16 bit registers, program counter and data pointer. Each is used to hold the

address of a byte in memory.

Program instruction bytes are fetched from locations in memory that are addressed by PC. PC is

automatically incremented after every instruction byte is fetched and may be altered by certain

instructions. The PC is only register that does not have any internal address.

The DPTR register is made up of two 8 bit registers named DPH &DPL, which are used to furnish

memory addresses for internal and external code access and external data access. The DPTR is under

the control of program instructions and can be specified by its 16 bit name, DPTR or by each byte

individual byte name DPH &DPL .DPTR does not have a single internal address; DPH &DPL are each

assigned an address.

3) A & B CPU register

The 8051 contains 34 general purpose or working registers. Two of these registers A& B hold results

of many instructions, particularly mathematical and logical operations of 8051 central processing

unit,(CPU).The other 32 are arranged as part of internal RAM in four bank B0-B3 of eight registers

and comprise the mathematical core.

The accumulator is the most versatile of the two CPU registers and used for many operations

including addition, subtraction, multiplication and division and boolean bit manipulation .It is also

used for all data transfer between the 8051 and any external memory. The register B is used for

multiplication and division operations together with A. This has no other function other than as a

location where data may be stored.

4) Flags and Program status word (PSW)

Flags are 1 bit registers provided to store the result of certain program instructions. Other

instructions can test the conditions of the flags and make decisions based upon the flag status. In

order that flag may be conveniently addresses as they are grouped inside the program status word

(PSW) &power control (PCON) register.

The 8051 has four math flags that respond automatically to the outcomes of mathematical

operations and three general purpose user flags that can be set to 1 or cleared to zero by

programmers as desired. The math flag includes carry(C) ,auxiliary carry(AC),overflow(O) and

parity(P) .User flags are named Fo,GFO,GF1 they are general purpose flag that may be used by

programmer to record some event in the program. Note that all of the flags can be set and cleared

by the programmer at will. The math flag, However are also affected by math operations.

E x p
 e

 r i m
 e

 n
 t

N
 o

:

1

Poornima College of Engineering Introduction to Embedded Systems and their working..

DEPARTMENT OF ELECTRICAL ENGINEERING Embedded System Lab Manual P a g e | 3

1F

1E

ID

IC

R7

R6

1B

1A

19

18

R5

R4

R3

R2

R1

R0

17

16

15

R7

14

13

12

11

R6

R5

R4

R3

10

R2

R1

R0

0F

0E

0D

0C

0B

0A

R7

R6

R5

R4

R3

R2

09

08

07

06

05

04

03

02

R1

R0

R7

R6

R5

R4

R3

R2

01

00

R1

R0

Internal RAM Organization

BYTE

ADDRESS

Byte

Address

7F

WORKING REGISTERS

Byte

Address

2F

2E

2D

2C

2B

2A

29

28

27

26

25

24

23

22

21

20

Bit

Addresses

7 0

30

General Purpose

BIT ADDRESSABLE

E x p
 e

 r i m
 e

 n
 t

N
 o

:

1

B
A

N
K

 2

B
A

N
K

 0

B
A

N
K

 3

B
A

N
K

 1

7F 78

77 70

6F 68

67 60

5F 58

57 50

4F 48

47 40

3F 38

37 30

2F 28

27 20

1F 18

17 10

0F 08

07 00

Poornima College of Engineering Introduction to Embedded Systems and their working..

DEPARTMENT OF ELECTRICAL ENGINEERING Embedded System Lab Manual P a g e | 4

5) Internal RAM.
The 128 byte Internal RAM which is shown in figure is organized into three distinct are as

a. Thirty two bytes from address 00h TO 1F H that make up 32 working register organized as four

banks of eight registers named R0 to R7. Each register can be addressed by a name (when its bank

is selected) or by its RAM address. Thus RO of bank 3 is RO (if bank 3 is currently selected) or

address 18 h (whether banks 3 is selected or not). Bits RS0 &RS1 in the PSW determine which bank

of registers is currently in use at any time when the program is running. Register banks not selected

can be used as general purpose RAM. Bank 0 is selected n RESET.

b. A bit addressable area of 16 bytes occupies RAM byte address 20H to 2FH from a total of 128
addressable bits. An addressable bit may be specified by its bit address of 00H to 75 H or 8 bits may
form any byte address from 20H to 2FH Thus, for example bit address 4F H is also bit 7 of byte
address, 29 H.
c. A general purpose RAM area above the bit area from 30 H to 7FH is addressable as byte.

6) Internal Memory

The functioning computer must have memory for program code bytes. Commonly in ROM& RAM

memory for variable data that can be altered as the program runs. The 8051 has internal RAM

&ROM memory for these functions .Additional memory can be added externally using suitable

circuits.

7) The stack and the stack pointer

The stack refers to an area of internal RAM that is used in conjunction with certain op codes to store

and retrieve data quickly. The 8 bit stack pointer SP register is used by the 8051 to hold an internal

RAM address that is called top of the stack. The address hold in SP register is the location in internal

RAM where the last byte of data was stored by a stack operation.

When data is to be placed on stack , SP increments before storing the data on the stack so that the

stack grows up as data is stored. As data is retrieved from the stack, the byte is read from the stack

and then the SP decrements to point to next available byte of stored data.

The stack of is limited in height to the size of internal RAM .The stack has a potential to overwrite a

valuable data in the register banks, bit addressable RAM and scratch pad RAM areas.

8) Special function register

The 8051 operations that do not use the internal 128 byte RAM addresses from 00H to 7F H are

done by a group of specific internal registers, each called a special function register (SFR),which may

be addressed much like internal RAM, using addresses 80 H to FF H. Some SFR’s are also bit

addressable as incase of bit area of RAM .This feature allows the programmer to change only what

needs to be altered, leaving the remaining bits in that SFR unchanged.

Not all of addresses from 890 H to FF H is used for SFR’s and attempting to use an address that is not

defined, or empty, results in unpredictable results. The PC is not part of SFR and has no internal RAM

address.

SFR’s are named in certain op codes by their functional names, such as A or TH0 and are referred by

other op codes by their addresses a such as OEOH or 8C H. Note that any address used in program

must start with a number; thus address EOH for the A SFR begins with 0.Failure to use this number

convention will result in an assembler error when the program is assembled.

9) Internal ROM

A corresponding block of internal program code, contained in an internal ROM, occupies code

address space 0000H to 0FFFH.

10) I/O Port

All ports are 8 bit bidirectional I/O ports. All ports except port 1 have alternate function.

E x p
 e

 r i m
 e

 n
 t

N
 o

:

1

Poornima College of Engineering Introduction to Embedded Systems and their working..

DEPARTMENT OF ELECTRICAL ENGINEERING Embedded System Lab Manual P a g e | 5

i) Port 0- Bi-directional. Lower order address and data bus for external memory

ii) Port 1- Only used as input and output ports.
iii) Port 2- Input /output ports also to supply a high order address byte in conjunction with port
0 to address external memory.
iv) Port 3- Port 3 pins have special serial port functions along with their I/P-O/P purpose.

Counter and Timer

Two 16 bits up counter T0 &T1 are provided for general use. Each counter can count internal clock

pulses, acting as timer or it can count external pulses as counter. All counters is controlled by bit

status in timer mode control (TMOD) and timer counter control register (TCON).

TMOD consists of two duplicate four bit register each of which controls the action of one of the

timer. TCON has control bits and flags for the timer in the upper nibble, and control bits and flags for

the external interrupts in the lower nibble.

Interrupts:

There are two external timer interrupts and one serial interrupt.

PROGRAM STATUS WORD

7 6 5 4 3 2 1 0

CY AC FO RS1 RS0 OV - P

Bit Symbol Function

7 CY
Carry flag used in arithmetic jump, rotate and

Boolean instructions

6 AC Auxiliary carry flag is used for BCD arithmetic.

5 FO User flag 0

4 RS1 Register bank select bit 1

3 RS0 Register bank select bit 0

2 OV Overflow flag used in arithmetic instructions.

1 - Reserved for future use

0 P
Parity flag shows parity of register A: 1=odd

parity.

RS1 RS0 BANK SELECTED

0 0 0

0 1 1

E x p
 e

 r i m
 e

 n
 t

N
 o

:

1

Poornima College of Engineering Introduction to Embedded Systems and their working..

DEPARTMENT OF ELECTRICAL ENGINEERING Embedded System Lab Manual P a g e | 6

CONCLUSION

1 0 2

1 1 3

Successfully Study the Introduction to Embedded Systems and their working.

VIVA QUESTIONS:

1. Can you define what an embedded system is and provide examples of where they are commonly

used?

2. What are the key components of an embedded system and how do they interact with each other?

3. Explain the difference between microcontrollers and microprocessors in the context of embedded

systems.

4. What are the advantages and disadvantages of using an embedded system compared to a general-

purpose computer?

5. Can you explain the role of sensors and actuators in embedded systems? Provide examples of

each.

6. How does real-time processing play a crucial role in embedded systems? Can you give examples

of real-time applications?

7. What are the various programming languages used for programming embedded systems, and what

factors might influence the choice of language?

8. Discuss the importance of power consumption and efficiency in embedded systems design.

9. What are some common communication protocols used in embedded systems, and when would

you choose one over the other?

10. Explain the concept of interrupts in embedded systems and how they are used to handle time-

critical tasks.

11. What are the challenges involved in debugging and testing embedded systems? How can they be

overcome?

12. Discuss the concept of firmware and its significance in embedded systems.

13. Can you explain the process of designing and implementing a simple embedded system project

from conception to completion?

14. How do embedded systems contribute to the development of IoT (Internet of Things) devices?

15. What are some emerging trends and advancements in the field of embedded systems that you find

particularly interesting or promising?

DIAGRAM

E x p
 e

 r i m
 e

 n
 t

N
 o

:

1

Poornima College of Engineering Introduction to Embedded Systems and their working..

DEPARTMENT OF ELECTRICAL ENGINEERING Embedded System Lab Manual P a g e | 7

8051 BLOCK DIAGRAM

 I/P

A0-A7
D0-D7

8 Bit data and
A B Address Bus

16Bit Address Bus

I/P

I/P
A8-A15

EA

ALE

PSEN

XTAL1

XTAL2

RESET

Vcc

GND

System Timing

System

Interrupts

Timers

Data Buffers

Memory Control

Byte/Bit

Addresses

Register

Bank 1

Special Function

Registers

TCON

I/O
Interrupt

Counter

Serial Data

 RD-WR

INTERNAL RAM STRUCTURE

SBUF

PCON

IP

IE

Register

Bank 2

Register

Bank 3

ROM

DPTR

DPH

DPL

PC

TLO

TMOD

TH1

TL1

THO

Register

Bank 0

Special

Function

Registers

RAM

PSW Arithmetic and Logic

Unit

E x p
 e

 r i m
 e

 n
 t

N
 o

:

1

L
A

T
C

H

L
A

T
C

H

L
A

T
C

H

L
A

T
C

H

P
O

R
T

 2

P
O

R
T

 1

P
O

R
T

 3

P
O

R
T

 0

Poornima College of Engineering Introduction to Embedded Systems and their working..

DEPARTMENT OF ELECTRICAL ENGINEERING Embedded System Lab Manual P a g e | 8

PIN DIAGRAM OF 8051 8-BIT MICROCONTROLLER

Port 1.0

1

P1.0

Vcc 40

+5V

Port 1.1 2 P1.1 (AD0)P0.0 39 Port 0.0

Port 1.2 3 P1.2 (AD1)P0.1 38 Port 0.1

Port 1.3 4 P1.3 (AD2)P0.2 37 Port 0.2

Port 1.4 5 P1.4 (AD3)P0.3 36 Port 0.3

Port 1.5 6 P1.5 (AD4)P0.4 35 Port 0.4

Port 1.6 7 P1.6 (AD5)P0.5 34 Port 0.5

Port 1.7 8 P1.7 (AD6)P0.6 33 Port 0.6

Reset Input 9 RST (AD7)P0.7 32 Port 0.7

Port 3.0 10 P3.0(RXD) (VPP)/EA 31 External Enable

Port 3.1 11 P3.1(TXD) (PROG)ALE 30 Address Latch Enable

Port 3.2 12 P3.2(INTO) PSEN 29 Program store Enable

Port 3.3 13 P3.3(INT1) (A15)P2.7 28 Port 2.7 Address 15

Port 3.4 14 P3.4(TO) (A14)P2.6 27 Port 2.6 Address 14

Port 3.5 15 P3.5(T1) (A13)P2.5 26 Port 2.5 Address 13

Port 3.6 16 P3.6(WR) (A12)P2.4 25 Port 2.4 Address 12

Port 3.7 17 P3.7(RD) (A11)P2.3 24 Port 2.3 Address 11

Crystal Input 2 18 XTAL2 (A10)P2.2 23 Port 2.2 Address 10

Crystal Input 1 19 XTAL1 (A9)P2.1 22 Port 2.1 Address 9

Ground 20 Vss (A8)P2.0 21 Port 2.0 Address 8

E x p
 e

 r i m
 e

 n
 t

N
 o

:

1

Poornima College of Engineering Introduction to Embedded Systems and their working..

DEPARTMENT OF ELECTRICAL ENGINEERING Embedded System Lab Manual P a g e | 9

PIN DIAGRAM OF 8051 8-BIT MICROCONTROLLER

Port 1.0

1

P1.0

Vcc 40

+5V

Port 1.1 2 P1.1 (AD0)P0.0 39 Port 0.0 Address/Data 0

Port 1.2 3 P1.2 (AD1)P0.1 38 Port 0.1Address/Data 1

Port 1.3 4 P1.3 (AD2)P0.2 37 Port 0.2 Address/ Data 2

Port 1.4 5 P1.4 (AD3)P0.3 36 Port 0.3Address/ Data 3

Port 1.5 6 P1.5 (AD4)P0.4 35 Port 0.4 Address/ Data 4

Port 1.6 7 P1.6 (AD5)P0.5 34 Port 0.5 Address/ Data 5

Port 1.7 8 P1.7 (AD6)P0.6 33 Port 0.6 Address/ Data 6

Reset Input 9 RST

Port 3.0 10 P3.0(RXD)

(AD7)P0.7 32

(VPP)/EA 31

Port 0.7 Address/ Data 7

External Enable

EPROM Program Pulse

Port 3.1 11 P3.1(TXD) (PROG)ALE 30 Address Latch Enable

Port 3.2 12 P3.2(INTO) PSEN 29 Program store Enable

Port 3.3 13 P3.3(INT1) (A15)P2.7 28 Port 2.7 Address 15

Port 3.4 14 P3.4(TO) (A14)P2.6 27 Port 2.6 Address 14

Port 3.5 15

Port 3.6 16

Port 3.7 17

P3.5(T1) (A13)P2.5 26

P3.6(WR) (A12)P2.4 25

P3.7(RD) (A11)P2.3 24

Port 2.5 Address 13

Port 2.4 Address 12

Port 2.3 Address 11

Crystal Input 2 18

Crystal Input 1 19

XTAL2 (A10)P2.2 23

XTAL1 (A9)P2.1 22

Port 2.2 Address 10

Port 2.1 Address 9

Ground Vss (A8)P2.0 21 Port 2.0 Address 8

E x p
 e

 r i m
 e

 n
 t

N
 o

:

1

Experiment No : 2

Data transfer instructions using different

addressing modes and block transfer

DEPARTMENT OF ELECTRICAL ENGINEERING

EMBEDDED SYSTEM LAB

E x p
 e r i m

 e
 n

 t
N

 o

:
1

Poornima College of Engineering Data transfer using different addressing modes

DEPARTMENT OF ELECTRICAL ENGINEERING Microcontroller & its applications P a g e | 1

AIM

PROGRAME

RESULT

Data transfer instructions using different addressing modes and block transfer.

To write a Assembly program for data transfer using different addressing modes.

Immediate Addressing Mode Register Addressing Mode Direct Addressing Mode
Indirect Addressing Mode Base Index Addressing Mode

Immediate Addressing Mode:
In this addressing mode, the source must be a value that can be followed by the ‘#’ and destination
must be SFR registers, general purpose registers and address. It is used for immediately storing the
value in the memory registers.

Memory

address

Opcode Label Mnemonic Comment

C000 74,20 MOV A, #20h //A is an accumulator register

C002 78,20 MOV R0,#20h // R0 is a general purpose register; 20 is
stored in the R0 register//

C004 80,07 MOV P0, #07h //P0 is a SFR register;07 is stored in the
P0//

C006 75,05 MOV 20h, #05h //20h is the address of the RAM; 05 stored
in the 20h//

Memory Location/Reg Content

A

R0

P0

20H

TITLE : To arrange numbers in ascending order.

E x p
 e r i m

 e n
 t

N
 o

:

2

https://www.elprocus.com/know-about-types-of-registers-in-8051-microcontroller/

Poornima College of Engineering Data transfer using different addressing modes

DEPARTMENT OF ELECTRICAL ENGINEERING Microcontroller & its applications P a g e | 2

RESULT

Register Addressing Mode:

In this addressing mode, the source and destination must be a register, but not general purpose

registers. So the data is not moved within the general purpose bank registers.

Syntax:

Memory

address

Opcode Label Mnemonic Comment

0000 74,23 MOV A,#23H // A is a SFR register

0002 FB MOV R3,A //MOVING

ACCUMULATOR
CONTENT

0003 74,63
MOV A,#63H

IMMIGIATE DATA TO

ACCUM

0005 CB
XCH A, R3

EXCHANGE

0006 EB
MOV A, R3

STORING R3 IN

ACCUM

Memory Location/Reg Content

A

R3

A

A AND R3

A

Direct Addressing Mode

In this addressing mode, the source or destination (or both source and destination) must
be an address, but not value.

E x p
 e r i m

 e n
 t

N
 o

:

2

https://www.elprocus.com/stack-memory-allocation-and-register-set-in-8051-microcontroller/

Poornima College of Engineering Data transfer using different addressing modes

DEPARTMENT OF ELECTRICAL ENGINEERING Microcontroller & its applications P a g e | 3

RESULT

Memory

address

Opcode Label Mnemonic Comment

0000 75,97,01 MOV 07h,#01H Moving immediate data (01h) in

address location (07h)

0003 E5,07 MOV A, 07H Moving data available at location/
address (07h) in Accumulator

0005 85,00,07 MOV 00h,07H Moving data available at address
location (07h) in to another address
location (00h)

0008 E6 MOV A,@R0 Moving data available at address
location which is identified by Ro in to
an Accumulator

0009 A6,07 MOV @R0, 07H Moving data present at address 07h in
to address identified by R0

000B 75,01,35 MOV 01,#35H Moving immediate data (35h) into
address location 01h

000E 77,44 MOV @R1,#44H Moving immediate data (44h) into
address identified by memory pointer
R1

Memory Location/Reg Content

07

A

00

A

07

01

35

Indirect Addressing Mode:

In this addressing mode, the source or destination (or destination or source) must
be a indirect address, but not a value. This addressing mode supports the pointer
concept. The pointer is a variable that is used to store the address of the other variable.
This pointer concept is only used for R0 and R1 registers.

In above example @R0 and @R1 is used as indirect addressing mode. Students must
practice with different address and values.

E x p
 e r i m

 e n
 t

N
 o

:

2

Poornima College of Engineering Data transfer using different addressing modes

DEPARTMENT OF ELECTRICAL ENGINEERING Microcontroller & its applications P a g e | 4

RESULT

Base Index Addressing Mode:

This addressing mode is used to read the data from the external memory or ROM memory.

All addressing modes cannot read the data from the code memory. The code must read
through the DPTR register. The DPTR is used to point the data in the code or external
memory.
Syntax:

Memory

address

Opcode Label Mnemonic Comment

C000 93 MOVC A, @A+DPTR C indicates code

memory

C001 E0 MOVX A, @DPTR X indicate external

memory

C002 74,00 MOV A, #00H 00H is stored in the A

register

C004 90,05,00 MOV DPTR, #0500H DPTR points 0500h

address in the memory

C007 93 MOVC A, @A+DPTR send the value to the A

register

C008 F5 MOV P0, A data of A send to the

PO registrar

Memory Location/Reg Content

A

A

A

DPTR

A

PO

E x p
 e r i m

 e n
 t

N
 o

:

2

https://www.elprocus.com/different-types-of-memory-modules-used-embedded-system/

Poornima College of Engineering Data transfer using different addressing modes

DEPARTMENT OF ELECTRICAL ENGINEERING Microcontroller & its applications P a g e | 5

VIVA QUESTIONS:
1. What is the purpose of data transfer instructions in computer architecture?

2. Can you explain the concept of addressing modes in the context of data transfer instructions?

3. What are the common addressing modes used in data transfer instructions?

4. How do immediate addressing mode and direct addressing mode differ from each other?

5. Describe the register addressing mode and its significance in data transfer operations.

6. What is indirect addressing mode, and how is it utilized in data transfer instructions?

7. Explain indexed addressing mode and its application in data transfer operations.

8. What are the benefits of using different addressing modes in data transfer instructions?

9. What is block transfer, and why is it important in data processing?

10. How does block transfer differ from regular data transfer instructions?

11. Describe the process of block transfer using assembly language instructions.

12. What are the advantages of employing block transfer over individual data transfer operations?

13. Can you explain the role of memory management in block transfer operations?

14. How do you optimize block transfer operations for performance efficiency?

15. Discuss any potential challenges or limitations associated with block transfer in data processing

tasks.

■■■

Poornima College of Engineering Data transfer using different addressing modes

DEPARTMENT OF ELECTRICAL ENGINEERING Microcontroller & its applications P a g e | 6

List of data transfer instructions
Data transfer instructions are responsible for transferring data between various memory
storing elements like registers, RAM, and ROM. The execution time of these instructions
varies based on how complex an operation they have to perform. In the table given
below, we have listed all the data transfer instruction. In the table [A]= Accumulator;
[Rn]=Register in RAM; DPTR=Data Pointer; PC=Program Counter

Operation Mnemonics Description

Register to register

MOV A, Rn [A]<-[Rn]

MOV Rn, A [Rn]<-[A]

XCH A, Rn [A]<-[Rn]

Memory to register

MOV A, @Rn [A]<-[Address in register]

MOV A, address [A]<-[Address]

MOV Rn, address [Rn]<-[Address]

MOVX A, @Rn [A]<-[Address in External ROM]

MOVC A, @A+DPTR [A]<-[Address in Internal ROM]

MOVC A, @A+PC [A]<-[Address in Internal ROM]

MOVX A, @DPTR [A]<-[Address in External ROM]

XCH A, @Rn [A]<-[Address]

XCHD A, @Rn [A]<-[Address]

XCH A, address [A]<-[Address]

Register to memory

MOVX @Ri, A [Address]<-[A]

MOV a8, A [Address]<-[A]

MOV a8, Rn [Address]<-[Rn]

MOVX @DPTR, A [Address]<-[A]

MOV @Rn, A [Address]<-[A]

Data to Register

MOV A, #data [A]<-[Data]

MOV Rn, #data [Rn]<-[Data]

MOV DPTR, #data [DPTR]<-[Data]

Address to Address

MOV a8, @Rn [Address]<-[Address]

MOV address, address [Address]<-[Address]

MOV @Rn, address [Address]<-[Address]

Data to address
MOV address, #data [Address]<-[Data]

MOV @Rn, #d8 [Address]<-[Data]

Stack
PUSH a8 Data added to stack

POP a8 Data removed from the stack

E x p
 e r i m

 e n
 t

N
 o

:

2

Experiment No : 03

Write a program for Arithmetic

operations in binary and BCD-

addition, subtraction, multiplication

and division and display.

DEPARTMENT OF ELECTRICAL ENGINEERING

EMBEDDED SYSTEMS

PCE, JAIPUR

AIM

THEORY

Write a program for Arithmetic operations in binary and BCD-addition, subtraction, multiplication and

division and display.

A decimal number contains 10 digits (0-9). Now the equivalent binary numbers can be found out of these

10 decimal numbers. In case of BCD the binary number formed by four binary digits, will be the

equivalent code for the given decimal digits. In BCD we can use the binary number from 0000-1001 only,

which are the decimal equivalent from 0-9 respectively. Suppose if a number have single decimal digit

then it’s equivalent Binary Coded Decimal will be the respective four binary digits of that decimal number

and if the number contains two decimal digits then it’s equivalent BCD will be the respective eight binary

of the given decimal number. Four for the first decimal digit and next four for the second decimal digit. It

may be cleared from an example. Let, (12)10 be the decimal number whose equivalent Binary coded

decimal will be 00010010. Four bits from L.S.B is binary equivalent of 2 and next four is the binary

equivalent of 1.

Table given below shows the binary and BCD codes for the decimal numbers 0 to 15. From the table

below, we can conclude that after 9 the decimal equivalent binary number is of four bit but in case of BCD

it is an eight bit number. This is the main difference between Binary number and binary coded decimal.

For 0 to 9 decimal numbers both binary and BCD is equal but when decimal number is more than one bit

BCD differs from binary.

Decimal number Binary number Binary Coded Decimal(BCD)

0 0000 0000

1 0001 0001

2 0010 0010

3 0011 0011

4 0100 0100

5 0101 0101

6 0110 0110

TITLE: Write a program for Arithmetic operations in binary and BCD-

addition, subtraction, multiplication and division and display.

E x p
 e r i m

 e n
 t

N
 o

:

0
 3

PCE, JAIPUR

7 0111 0111

8 1000 1000

9 1001 1001

10 1010 0001 0000

11 1011 0001 0001

12 1100 0001 0010

13 1101 0001 0011

14 1110 0001 0100

15 1111 0001 0101

BCD Addition
Like other number system in BCD arithmetical operation may be required. BCD is a numerical

code which has several rules for addition. The rules are given below in three steps with an

example to make the idea of BCD Addition clear.

1. At first the given number are to be added using the rule of binary. For example,

2. In second step we have to judge the result of addition. Here two cases are shown to

describe the rules of BCD Addition. In case 1 the result of addition of two binary number

is greater than 9, which is not valid for BCD number. But the result of addition in case 2 is

less than 9, which is valid for BCD numbers.

3. If the four bit result of addition is greater than 9 and if a carry bit is present in the result

then it is invalid and we have to add 6 whose binary equivalent is (0110)2 to the result of

addition. Then the resultant that we would get will be a valid binary coded number. In

case 1 the result was (1111)2, which is greater than 9 so we have to add 6 or (0110)2 to it.

As you can see the result is valid in BCD.

But in case 2 the result was already valid BCD, so there is no need to add 6. This is how BCD

Addition could be.

Now a question may arrive that why 6 is being added to the addition result in case BCD

Addition instead of any other numbers. It is done to skip the six invalid states of binary coded

decimal i.e from 10 to 15 and again return to the BCD codes.

Now the idea of BCD Addition can be cleared from two more examples.

Example:1

Let, 0101 is added with 0110.

E x p
 e r i m

 e n
 t

N
 o

:

0
 3

PCE, JAIPUR

Check your self.

Example:2

Now let 0001 0011 is added to 0010 0110.

So no need to add 6 as because both are less than (9)10.

This is the process of BCD Addition.

BCD Subtraction

There are several methods of BCD Subtraction. BCD subtraction can be done by 1’s

compliment method and 9’s compliment method or 10’s compliment method. Among all

these methods 9’s compliment method or 10’s compliment method is the most easiest. We

will clear our idea on both the methods of BCD Subtraction.

In 1st method we will do BCD Subtraction by 1‟s compliment method. There are several steps

for this method shown below. They are:-

1. At first 1‟s compliment of the subtrahend is done.

2. Then the complimented subtrahend is added to the other number from which the

subtraction is to be done. This is called adder 1.

3. Now in BCD Subtraction there is a term „EAC(end-around-carry)‟. If there is a carry i.e

if EAC = 1 the result of the subtraction is +ve and if EAC = 0 then the result is –ve. A

table shown below gives the rules of EAC.

carry of individual groups EAC = 1 EAC = 0

1
Transfer real result of adder

1 and add 0000 in adder 2

Transfer 1‟s compliment result of

adder 1 and add 1010 in adder 2

0
Transfer real result of adder

1 and add 1010 in adder 2

Transfer 1‟s compliment result of

adder 1 and add 0000 to adder 2

4. In the final result if any carry bit occurs the it will be ignored.

Examples given below would make the idea clear of BCD Subtraction.

E x p
 e r i m

 e n
 t

N
 o

:

0
 3

https://www.electrical4u.com/1s-complement/

PCE, JAIPUR

Example: – 1

In this example 0010 0001 0110 is subtracted from 0101 0100 0001.

 At first 1‟s compliment of the subtrahend is done, which is 1101 1110 1001 and is added

to 0101 0100 0001. This step is called adder 1.

 Now after addition if any carry occurs then it will be added to the next group of numbers

towards MSB. Then EAC will be examined. Here, EAC = 1. So the result of addition is

positive and true result of adder 1 will be transferred to adder 2.

 Now notice from LSB. There are three groups of four bit numbers. 1010 is added 1011

which is the first group of numbers because it do not have any carry. The result of the

addition is the final answer.

 Carry 1 will be ignored as it is from the rule.

 Now move to the next group of numbers. 0000 is added to 0010 and gives the result 0010.

It is the final result again.

 Now again move to the next group here 0000 is also added to 0011 to give the final result

0011.

 You may have noticed that in this two groups 0000 is added, because result of first adder

do not contain any carry. Thus the results of the adder 2 is the final result of BCD

Subtraction.

Therefore,

Now you can check yourself.

We know that 541 − 216 = 325, Thus we can say that our result of BCD Subtraction is correct.

E x p
 e r i m

 e n
 t

N
 o

:

0
 3

PCE, JAIPUR

MOV A,#47H; A=47H first BCD operand(0100 0111 BCD)

MOV B, #25H ;B=25 second BCD operand(0010 0101 BCD)

ADD A,B ;hex addition (A=6CH)

DA A; adjusts for BCD addition (A=72H)

MOV R0, #20H;set source address 20H to R0

MOV R1, #30H;set destination address 30H to R1

MOV A, @R0;take the first operand from source to register A

INC R0; Point to the next location

MOV B, @R0; take the second operand from source to register B

DIV AB ; Divide A by B

MOV @R1, A; Store Quotient to 30H

INC R1; Increase R1 to point to the next location

MOV @R1, B; Store Remainder to 31H

HALT: SJMP HALT ;Stop the program

When it comes to adding BCD numbers in microcontrollers, normal binary addition will give the

wrong results. So to solve this issue, microcontrollers use the DA command, which converts the

binary results to BCD. The DA command can take only one operand; A.

Example

Program

8051 provides DI VAB instruction. By using this instruction, the division can be done. In some

other microprocessors like 8085, there was no DIV instruction. In that microprocessor, we need to

use repetitive Subtraction operations to get the result of the division.

When the denominator is00H, the overflow flag OV will be 1. otherwise it is 0 for the division.

Output

Address Value

20H 0EH

PROGRAM

E x p
 e r i m

 e n
 t

N
 o

:

0
 3

PCE, JAIPUR

Address Value

21H 03H

30H 04H

31H 02H

Packed BCD

In packed BCD, a single byte has two BCD numbers in it, one in the lower 4 bits, and one in the

upper 4 bits. For example, “0101 1001″ is packed BCD for 59H. It takes only 1 byte of memory to

store the packed BCD operands. And so one reason to use packed BCD is that it is twice as

efficient in storing data.

There is a problem with adding BCD numbers, which must be corrected. The problem is that after

adding packed BCD numbers, the result is no longer BCD. Look at the following.

Adding these two numbers gives 0011 111 IB (3FH), which is not BCD! A BCD number can only

have digits from 0000 to 1001 (or 0 to 9). In other words, adding two BCD numbers must give a

BCD result. The result above should have been 17 + 28 = 45 (0100 0101). To correct this

problem, the programmer must add 6 (0110) to the low digit: 3F + 06 = 45H. The same problem

could have happened in the upper digit (for example, in 52H + 87H = D9H). Again to solve this

problem, 6 must be added to the upper digit (D9H + 60H = 139H) to ensure that the result is BCD

(52 + 87 = 139). This problem is so pervasive that most microprocessors such as the 8051 have an

instruction to deal with it. In the 8051 the instruction “DA A” is designed/to correct the BCD

addition problem. This is discussed next.

DA instruction

The DA (decimal adjust for addition) instruction in the 8051 is provided to correct the

aforementioned problem associated with BCD addition. The mnemonic “DA” has as its only

operand the accumulator “A”. The DA instruction will add 6 to the lower nibble or higher nibble

if needed; otherwise, it will leave the result alone. The following example will clarify these points.

E x p
 e r i m

 e n
 t

N
 o

:

0
 3

PCE, JAIPUR

After the program is executed, register A wili contain 72H (47 + 25 = 72). The “DA” instruction

works only on A. In other words, while the source can be an operand of any addressing mode, the

destination must be in register A in order for DA to work. It also needs to be emphasized that DA

must be used after the addition of BCD operands and that BCD operands can never have any digit

greater than 9. In other words, A – F digits are not allowed. It is also important to note that DA

works only after an ADD instruction; it will not work after the INC instruction.

Summary of DA action

After an ADD or ADDC instruction,

1. If the lower nibble (4 bits) is greater than 9, or if AC = 1, add 0110 to the lower

4 bits.

1. If the upper nibble is greater than 9, or if CY = 1, add 0110 to the upper 4 bits.

In reality there is no other use for the AC (auxiliary carry) flag bit except for BCD addition and

correction. For example, adding 29H and 18H will result in 41H, which is incorrect as far as BCD

is concerned.

Since AC = 1 after the addition, “DA A” will add 6 to the lower nibble. The final result is in BCD

format.

Example 6-4

Assume that 5 BCD data items are stored in RAM locations starting at 40H, as shown below.

Write a program to find the sum of all the numbers. The result must be in BCD.

40= (71) 41=(11) 42=(65) 43=(59) 44=(37)

Subtraction of unsigned numbers

In many microprocessors there a^e two different instructions for subtraction: SUB and SUBB

(subtract with borrow). In the 8051 we have only SUBB. To make SUB out of SUBB, we have to

E x p
 e r i m

 e n
 t

N
 o

:

0
 3

PCE, JAIPUR

make CY = 0 prior to the execution of the instruction. Therefore, there are two cases for the

SUBB instruction: (1) with CY = 0, and (2) with CY = 1. First we examine the case where CY = 0

prior to the execution of SUBB. Notice that we use the CY flag for the borrow.

SUBB (subtract with borrow) when CY=0

In subtraction, the 8051 microprocessors (indeed, all modern CPUs) use the 2′s complement

method. Although every CPU contains adder circuitry, it would be too cumbersome (and take too

many transistors) to design separate subtracter circuitry. For this reason, the 8051 uses adder

circuitry to perform the subtraction command. Assuming that the 8051 is executing a simple

subtract instruction and that CY = 0 prior to the execution of the instruction, one can summarize

the steps of the hardware of the CPU in executing the SUBB instruction for unsigned numbers, as

follows.

1. Take the 2′s complement of the subtrahend (source operand).

2. Add it to the minuend (A).

3. Invert the carry.

These three steps are performed for every SUBB instruction by the internal hardware of the 8051

CPU, regardless of the source of the operands, provided that the addressing mode is supported.

After these three steps the result is obtained and the flags are set. Example 6-5 illustrates the three

steps.

Example 6-5

The flags would be set as follows: CY = 0, AC – 0, and the programmer must look at the carry

flag to determine if the result is positive or negative.

Show the steps involved in the following.

If the C Y = 0 after the execution of SUBB, the result is positive; if C Y = 1, the result is negative

and the destination has the 2′s complement of the result. Normally, the result is left in 2′s

E x p
 e r i m

 e n
 t

N
 o

:

0
 3

PCE, JAIPUR

complement, but the CPL (complement) and INC instructions can be used to change it. The CPL

instruction performs the 1 „s complement of the operand; then the operand is incremented (INC)

to get the 2′s complement. See Example 6-6.

Example 6-6

SUBB (subtract with borrow) when CY= 1

This instruction is used for multibyte numbers and will take care of the borrow of the lower

operand. If CY = 1 prior to executing the SUBB instruction, it also subtracts 1 from the result. See

Example 6-7.

Example 6-7

Analyze the following program:

Solution:

After the SUBB, A = 62H – 96H = CCH and the carry flag is set high indicating there is a borrow.

Since CY = 1, when SUBB is executed the second time A = 27H – 12H -1 = 14H. Therefore, we

have 2762H – 1296H = 14CCH.

E x p
 e r i m

 e n
 t

N
 o

:

0
 3

PCE, JAIPUR

UNSIGNED MULTIPLICATION AND DIVISION

In multiplying or dividing two numbers in the 8051, the use of registers A and B is required since

the multiplication and division instructions work only with these two registers. We first discuss

multiplication.

Multiplication of unsigned numbers

The 8051 supports byte-by-byte multiplication only. The bytes are assumed to be unsigned data.

The syntax is as follows:

In byte-by-byte multiplication, one of the operands must be in register A, and the second operand

must be in register B. After multiplication, the result is in the A and B registers; the lower byte is

in A, and the upper byte is in B. The following example multiplies 25H by 65H. The result is a

16-bit data that is held by the A and B registers.

Unsigned Multiplication Summary (MUL AB)

Note: Multiplication of operands larger than 8 bits takes some manipulation. It is left to the reader

to experiment with.

Division of unsigned numbers

In the division of unsigned numbers, the 8051 supports byte over byte only. The syntax is as

follows.

When dividing a byte by a byte, the numerator must be in register A and the denominator must be

in B. After the DIV instruction is performed, the quotient is in A and the remainder is in B. See

the following example.

Notice the following points for instruction “DIV AB”.

E x p
 e r i m

 e n
 t

N
 o

:

0
 3

PCE, JAIPUR

1. This instruction always makes CY = 0 and OV = 0 if the denominator is not 0.

1. If the denominator is 0 (B = 0), OV = 1 indicates an error, and CY = 0. The

standard practice in all microprocessors when dividing a number by 0 is to

indicate in some way the invalid result of infinity. In the 8051, the OV flag is

set to 1.

Unsigned Division Summary (DIV AB)

An application for DIV instructions

There are times when an ADC (analog-to-digital converter) is connected to a port and the ADC

represents some quantity such as temperature or pressure. The 8-bit ADC provides data in hex in

the range of 00 – FFH. This hex data must be converted to decimal. We do that by dividing it by

10 repeatedly, saving the remainders as shown in Example 6-8.

Example 6-8

Write a program (a) to make PI an input port, (b) to get a byte of hex data in the range of 00 –

FFH from PI and convert it to decimal. Save the digits in R7, R6, and R5, where the least

significant digit is in R7.

Solution:

The input value from PI is in the hex range of 00 – FFH or in binary 00000000 to 11111111. This

program will not work if the input data is in BCD. In other words, this program converts from

binary to decimal. To convert a single decimal digit to ASCII format, we OR it with 30H as

shown in Sections 6.4 and 6.5.

Example 6-9

E x p
 e r i m

 e n
 t

N
 o

:

0
 3

PCE, JAIPUR

RESULT

Analyze the program in Example 6-8, assuming that PI has a value of FDH for data. Solution:

To convert a binary (hex) value to decimal, we divide it by 10 repeatedly until the quotient is less

than 10. After each division the remainder is saved. In the case of an 8-bit binary such as FDH we

have 253 decimal as shown below (all in hex).

Therefore, we have FDH = 253. In order to display this data it must be converted to ASCII, which

is described in a later section in this chapter.

Successfully study the programming Arithmetic operations in binary and BCD-addition, subtraction,

multiplication and division in microcontroller kit.

VIVA QUESTIONS:

1. Can you explain the difference between binary and BCD (Binary Coded Decimal) representation?

2. How do you convert a decimal number into its binary equivalent?

3. What are the basic arithmetic operations involved in binary addition?

4. Could you outline the algorithm for performing binary addition in a program?

5. How do you handle carry-over in binary addition?

6. What are the key considerations when implementing binary subtraction in a program?

7. How is binary subtraction different from binary addition algorithmically?

8. Can you discuss the process of performing binary multiplication?

9. What are the key challenges in binary multiplication, especially when implemented in a program?

10. How do you handle overflow in binary multiplication?

11. Explain the steps involved in binary division.

12. What are some key differences between binary division and other arithmetic operations?

13. How do you handle remainders in binary division?

14. What is the significance of BCD representation in arithmetic operations?

15. Can you discuss any potential limitations or drawbacks of using BCD in arithmetic operations

compared to binary representation?

E x p
 e r i m

 e n
 t

N
 o

:

0
 3

Experiment No: 4

Interfacing of 8 bit DAC 0800 with 89C51

Microcontroller.

DEPARTMENT OF ELECTRICAL ENGINEERING

Embedded System

INTERFACING OF 8 BIT DAC 0800 WITH 89C51 MICROCONTROLLER.

PCE, Jaipur Embedded System P a g e | 1

AIM

APPRATUS

DEFINATION

THEORY

Interfacing of 8 bit DAC 0800 with 80C51 micro-controller.

1) 89C51 Kit.

2) DAC interfacing cord.

3) CRO.

4) 26 pin FRC cable.

5) Kit power supply.

6) Dual power supply with +/- 12volt/ 200mA.

7) Software.

The digital to analog converter (DAC) is a device widely used to convert digital pulses to analog

signals.

Digital to analog converter

Digital to analog converter using 150ns DAC 0808/1408. OPAMP is used to convert current

output from DAC to voltage output & as an amplifier.

DAC 0808 a monolithic DAC featuring full scale output current setting time of 150 ns

which dissipating only 38-40MW with 5Volt D.C. supply. No reference current timing is

required for most of the applications.

Triangular Wave Form:-

If 8bit binary number is connected to DAC input & incremented from 0 to 255 steps

continuously & again decremented up to zero. This process is repeated. Then you will get

triangular wave consisting of 256 with positive and negative.

Square Wave:-

A square wave can be generated by sending FFH that is high signal to DAC. Then

apply some delay & afterwords send OOH , some delay with repeatability. We can form

square wave.

Interfacing Diagram Description:-

Fig. 1 shows interface of DAC 0809 with 89C51. DAC 0800 is an 8-bit DAC. The output
of 89C51 is a digital signal which may further converted into analog signal using DAC. The

TITLE: Interfacing of 8 bit DAC 0800 with 80C51 micro-controller.

m
 e

 n
 t N

 o
 : 4

INTERFACING OF 8 BIT DAC 0800 WITH 89C51 MICROCONTROLLER.

PCE, Jaipur Embedded System P a g e | 2

output of DAC is a current & it is necessary to convert this into voltage signal in some cases.
Therefore, current to voltage converter is needed.

In fig 1 operational amplifier base current to voltage converter is shown. It is only
necessary to output digital data byte & analog output will be available till the time digital data
at input of DAC remains the same. Port data of 8051are internally latched & this makes again
the DAC interfacing very simple.
Connector details:-

For interfacing of LED logic, port O, port 2,port 3 of microcontroller has been

used. On the board of LED logic 26 pin FRC connector is provided for connection purpose. The

details of this connector are given to understand each & every pin connection of 8051 part

although it is for reference.

PIN NUMBERS DETAILS

01 PC.4

02 PC.5

03 PC.2

04 PC.3

05 PC.0

06 PC.1

07 PB.6

08 PB.7

09 PB.4

10 PB.5

11 PB.2

12 PB.3

13 PB.0

14 PB.1

15 PA.6

16 PA.7

17 PA.4

18 PA.5

19 PA.2

20 PA.3

E x p
 e r i m

 e
 n

 t N
 o

 : 4

INTERFACING OF 8 BIT DAC 0800 WITH 89C51 MICROCONTROLLER.

PCE, Jaipur Embedded System P a g e | 3

PROGRAM

21 PA.0

22 PA.1

23 PC.6

24 PC.7

25 GND

26 Vcc

Square Wave

Memory

address

Opcode Label Mnemonic Comment

9400 ORG 9400H

9400 75 81 90 MOV SP,# 90H

9403 79 00 MOV R1, # 00HA

9405 90 94 2D MOV DPTR, # LINE 1 Initialize DPTR

9408 12 00 5A LCALL MSG OUT

940B 90 00 03 MOV DPTR, # CW 55

940E 74 80 MOV A, # 80H Copy content of port 0 to A

9410 F0 MOVX @DPTR, A Copy content of A to DPTR

9411 74 FF LOOP MOV A, # OFFH

9413 90 00 00 MOV DPTR, # PORTA

9416 F0 MOVX @ DPTR,A

9417 90 00 01 MOV DPTR, # PORTB

941A FO MOVX @DPTR, A

941B 14 HERE DEC A

941C B4 00 FC CJNE A, # 00H, HERE Compare A with 00 H and jump to

E x p
 e r i m

 e
 n

 t N
 o

 : 4

INTERFACING OF 8 BIT DAC 0800 WITH 89C51 MICROCONTROLLER.

PCE, Jaipur Embedded System P a g e | 4

 LOOP if not equal

941F 90 00 00 LOOP 1 MOV DPTR, #PORTA

9422 F0 MOVX @DPTR,A

9423 90 00 01 MOV DPTR, # PORTB

9426 F0 MOVX @DPTR,A

9427 04 HERE 1 INC A

9428 B4 FF FC CJNE A, # OFFH, HERE 1 Compare A with FF H and jump to

LOOP if not equal

942B 81 11 AJMP LOOP Absolute jump to LOOP

942D 3A 53 51 55 LINE1 DB

9431 41 52 45 20 SQUARE WAVE

9435 57 41 56 45 03H

9439 03

Triangular Wave

Memory

address

Opcode Label Mnemonic Comment

9400 ORG 9400H

9400 75 81 90 MOV SP,# 90H

9403 79 00 MOV R1, # 00HA

9405 90 94 35 MOV DPTR, # LINE 1 Initialize DPTR

9408 12 00 5A LCALL MSG OUT

940B 90 00 03 MOV DPTR, # CW 55

940E 74 80 MOV A, # 80H Copy content of port 0 to A

9410 F0 MOVX @DPTR, A Copy content of A to DPTR

9411 75 35 FF MOV MN, # OFFH

9414 15 35 LOOP DEC MN

9416 90 00 00 MOV DPTR # PORTA

E x p
 e r i m

 e
 n

 t N
 o

 : 4

INTERFACING OF 8 BIT DAC 0800 WITH 89C51 MICROCONTROLLER.

PCE, Jaipur Embedded System P a g e | 5

9419 E5 35 MOV A, MN

941B FO MOVX @DPTR, A

941C 90 00 01 MOV DPTR, # PORTB

941F F0 MOVX @DPTR,A

9420 B4 00 F1 CJNE A, # OFFH, LOOP Compare A with FF H and jump to

LOOP if not equal

9423 05 35 LOOP1: INC MN

9425 E5 35 MOV A, MN

9427 90 00 00 MOV DPTR, # PORT A

942A F0 MOVX @DPTR,A

942B 90 00 01 MOV DPTR, # PORTB

942E F0 MOVX @DPTR,A

942F B4 FF F1 CJNE A, # OFFH, LOOP1 Compare A with FF H and jump to

LOOP1 if not equal

9432 02 94 14 LJMP LOOP

9435 54 52 41 49 LINE1: DB TRIANGULAR WAVE

03H

9439 4E 47 55 4C

943D 41 52 20 57

9441 41 56 45 03

VIVA QUESTIONS:

1. What is the purpose of interfacing a DAC (Digital-to-Analog Converter) with a

microcontroller?

2. Can you explain the basic working principle of the DAC 0800?

3. How does the 89C51 Microcontroller communicate with the DAC 0800?

4. What are the key features of the 89C51 Microcontroller that make it suitable for interfacing

with external devices like a DAC?

5. Explain the significance of the 8-bit resolution of the DAC 0800.

6. What is the role of the DAC 0800 in converting digital signals from the microcontroller into

analog voltage levels?

7. How do you configure the 89C51 Microcontroller to send digital data to the DAC 0800?

8. Can you describe the hardware connections required for interfacing the 89C51 Microcontroller

with the DAC 0800?

E x p
 e r i m

 e
 n

 t N
 o

 : 4

INTERFACING OF 8 BIT DAC 0800 WITH 89C51 MICROCONTROLLER.

PCE, Jaipur Embedded System P a g e | 6

9. What is the maximum output voltage range of the DAC 0800, and how is it determined?

10. How do you calibrate the output voltage of the DAC 0800 to achieve precise analog voltage

levels?

11. What are the potential applications of interfacing a DAC with a microcontroller in real-world

scenarios?

12. Discuss any potential challenges or limitations associated with interfacing the DAC 0800 with

the 89C51 Microcontroller.

13. How do you verify the proper functionality of the interfaced system in the experiment?

14. What are the advantages of using an 8-bit DAC over a DAC with lower or higher resolution?

15. Can you suggest any improvements or enhancements to the experimental setup for better

performance or functionality?

■■■

INTERFACING OF 8 BIT DAC 0800 WITH 89C51 MICROCONTROLLER.

PCE, Jaipur Embedded System P a g e | 7

10uF

8.2K
5.4K

-

 +

COMP

Vref (-) 2.5 K
-12V

Vcc

DAC

D0

D1

D2

D3

D4

D5

D6

D7

Vcc Vref

ATMEL
Pa0

8051 Pa1

Pa2

Pa3

Pa4

Pa5

Pa6

Pa7

RST

DIAGRAM

E x p
 e r i m

 e
 n

 t N
 o

 : 4

INTERFACING OF 8 BIT DAC 0800 WITH 89C51 MICROCONTROLLER.

PCE, Jaipur Embedded System P a g e | 8

AGND GND

+ 12v -12 V

P 0.0

P 0.1

P 0.2

P 0.3

P 0.4

P 0.5

P 0.6

P 0.7

Vcc
V

EE

COMP

-VreF

2KZ

2KZ

2KZ

0.01 uF

2 -

270

+12V
7 6

 +5V

GND

1

AGND

2

+12V

1 +
-12V

39K

5K

1K

4

-12V

P 3.0

P 3.1

P 3.2

P 3.3

P 3.4

0.01uF

2K

2K

270
P 3.5

P 3.6

P 3.7

+5V

12V

2K

- 7

1 2
741

+ 4
-12V

39K

1K

-VreF

-VreF

D0

D1

D2

D3

D4

D5

D6

D7

V
EE

E x p
 e r i m

 e
 n

 t N
 o

 : 4

Experiment No: 5

Write a program to interfacing IR sensor

to realize obstacle detector

DEPARTMENT OF ELECTRICAL ENGINEERING

Embedded System

Lab

E x p
 e r i m

 e
 n

 t N
 o

 : 4

PCE, Jaipur Embedded System P a g e | 1

TITLE: Write a program to interfacing IR sensor to realize
obstacle detector

APPRATUS

THEORY

Write a program to interfacing IR sensor to realize obstacle detector.

1) Ardunio kit

2) DSO

3) Variable Resistor (10K)

4) Resistor

5) IR Sensor

6) Kit power supply or Dual power supply with +/- 12volt/ 200mA.

7) Proteus Software

8) Connecting code and DSO Probe

A) Introduction

Infrared technology addresses a wide variety of wireless applications. The main areas are sensing
and remote controls. In the electromagnetic spectrum, the infrared portion is divided into three
regions: near infrared region, mid infrared region and far infrared region.The wavelengths of these
regions and their applications are shown below.

 Near infrared region — 700 nm to 1400 nm — IR sensors, fiber optic
 Mid infrared region — 1400 nm to 3000 nm — Heat sensing
 Far infrared region — 3000 nm to 1 mm — Thermal imaging

The frequency range of infrared is higher than microwave and lesser than visible light. For optical
sensing and optical communication, photo optics technologies are used in the near infrared region
as the light is less complex than RF when implemented as a source of signal. Optical wireless
communication is done with IR data transmission for short range applications. An infrared sensor
emits and/or detects infrared radiation to sense its surroundings. The working of any Infrared
sensor is governed by three laws: Planck’s Radiation law, Stephen – Boltzmann law and Wien’s
Displacement law. Planck’s law states that “every object emits radiation at a temperature not equal
to 00K”. Stephen – Boltzmann law states that “at all wavelengths, the total energy emitted by a
black body is proportional to the fourth power of the absolute temperature”. According to Wien’s
Displacement law, “the radiation curve of a black body for different temperatures will reach its
peak at a wavelength inversely proportional to the temperature”.

AIM

E x p
 e r i m

 e
 n

 t N
 o

 : 5

PCE, Jaipur Embedded System P a g e | 2

The basic concept of an Infrared Sensor which is used as Obstacle detector is to transmit an
infrared signal, this infrared signal bounces from the surface of an object and the signal is received
at the infrared receiver.

B) Types of IR Sensors

Infrared sensors can be passive or active. Passive infrared sensors are basically Infrared detectors.
Passive infrared sensors do not use any infrared source and detects energy emitted by obstacles in
the field of view. They are of two types: quantum and thermal. Thermal infrared sensors use
infrared energy as the source of heat and are independent of wavelength. Thermocouples,
pyroelectric detectors and bolometers are the common types of thermal infrared detectors.
Quantum type infrared detectors offer higher detection performance and are faster than thermal
type infrared detectors. The photosensitivity of quantum type detectors is wavelength dependent.
Quantum type detectors are further classified into two types: intrinsic and extrinsic types. Intrinsic
type quantum detectors are photoconductive cells and photovoltaic cells.
Active infrared sensors consist of two elements: infrared source and infrared detector. Infrared
sources include an LED or infrared laser diode. Infrared detectors include photodiodes or
phototransistors. The energy emitted by the infrared source is reflected by an object and falls on
the infrared detector.

C) IR Transmitter

Infrared Transmitter is a light emitting diode (LED) which emits infrared radiations. Hence, they are
called IR LED’s. Even though an IR LED looks like a normal LED, the radiation emitted by it is
invisible to the human eye.
The picture of a typical Infrared LED is shown below.

There are different types of infrared transmitters depending on their wavelengths, output power
and response time. A simple infrared transmitter can be constructed using an infrared LED, a
current limiting resistor and a power supply. The schematic of a typical IR transmitter is shown
below.

PCE, Jaipur Embedded System P a g e | 3

Figure 1: IR Transmitter circuit

When operated at a supply of 5V, the IR transmitter consumes about 3 to 5 mA of current. Infrared
transmitters can be modulated to produce a particular frequency of infrared light. The most
commonly used modulation is OOK (ON – OFF – KEYING) modulation.
IR transmitters can be found in several applications. Some applications require infrared heat and
the best infrared source is infrared transmitter. When infrared emitters are used with Quartz, solar
cells can be made.

D) IR Receiver

Infrared receivers are also called as infrared sensors as they detect the radiation from an IR

transmitter. IR receivers come in the form of photodiodes and phototransistors. Infrared Photodiodes

are different from normal photo diodes as they detect only infrared radiation. The picture of a typical

IR receiver or a photodiode is shown below.

Different types of IR receivers exist based on the wavelength, voltage, package, etc. When used in

an infrared transmitter – receiver combination, the wavelength of the receiver should match with that

of the transmitter.A typical infrared receiver circuit using a phototransistor is shown below.

PCE, Jaipur Embedded System P a g e | 4

It consists of an IR phototransistor, a diode, a MOSFET, a potentiometer and an LED. When the
phototransistor receives any infrared radiation, current flows through it and MOSFET turns on. This
in turn lights up the LED which acts as a load. The potentiometer is used to control the sensitivity of
the phototransistor.

 WORKING PRINCIPLE

The principle of an IR sensor working as an Object Detection Sensor can be explained using the

following figure. An IR sensor consists of an IR LED and an IR Photodiode; together they are called

as Photo – Coupler or Opto – Coupler. When the IR transmitter emits radiation, it reaches the object

and some of the radiation reflects back to the IR receiver. Based on the intensity of the reception by

the IR receiver, the output of the sensor is defined.

Obstacle Sensing Circuit or IR Sensor Circuit

It consists of an IR LED, a photodiode, a potentiometer, an IC Operational amplifier and an LED. IR

LED emits infrared light. The Photodiode detects the infrared light. An IC Op – Amp is used as a

voltage comparator. The potentiometer is used to calibrate the output of the sensor according to the

requirement. When the light emitted by the IR LED is incident on the photodiode after hitting an

object, the resistance of the photodiode falls down from a huge value. One of the input of the op –

amp is at threshold value set by the potentiometer. The other input to the op-amp is from the

photodiode’s series resistor. When the incident radiation is more on the photodiode, the voltage drop

across the series resistor will be high. In the IC, both the threshold voltage and the voltage across the

series resistor are compared. If the voltage across the resistor series to photodiode is greater than that

of the threshold voltage, the output of the IC Op – Amp is high. As the output of the IC is connected

to an LED, it lightens up. The threshold voltage can be adjusted by adjusting the potentiometer

depending on the environmental conditions. The positioning of the IR LED and the IR Receiver is an

important factor. When the IR LED is held directly in front of the IR receiver, this setup is called

Direct Incidence. In this case, almost the entire radiation from the IR LED will fall on the IR

receiver. Hence there is a line of sight communication between the infrared transmitter and the

receiver. If an object falls in this line, it obstructs the radiation from reaching the receiver either by

reflecting the radiation or absorbing the radiation.

PCE, Jaipur Embedded System P a g e | 5

Distinguishing Between Black and White Colors

It is universal that black color absorbs the entire radiation incident on it and white color reflects the

entire radiation incident on it. Based on this principle, the second positioning of the sensor couple

can be made. The IR LED and the photodiode are placed side by side. When the IR transmitter emits

infrared radiation, since there is no direct line of contact between the transmitter and receiver, the

emitted radiation must reflect back to the photodiode after hitting any object. The surface of the

object can be divided into two types: reflective surface and non-reflective surface. If the surface of

the object is reflective in nature i.e. it is white or other light color, most of the radiation incident on it

will get reflected back and reaches the photodiode. Depending on the intensity of the radiation

reflected back, current flows in the photodiode.If the surface of the object is non-reflective in nature

i.e. it is black or other dark color, it absorbs almost all the radiation incident on it. As there is no

reflected radiation, there is no radiation incident on the photodiode and the resistance of the

photodiode remains higher allowing no current to flow. This situation is similar to there being no

object at all. The pictorial representation of the above scenarios is shown below.

The positioning and enclosing of the IR transmitter and Receiver is very important. Both the

transmitter and the receiver must be placed at a certain angle, so that the detection of an object

happens properly. This angle is the directivity of the sensor which is +/- 45 degrees.

In order to avoid reflections from surrounding objects other than the object, both the IR transmitter

and the IR receiver must be enclosed properly. Generally the enclosure is made of plastic and is

painted with black color.

.

PCE, Jaipur Embedded System P a g e | 6

CIRCUIT DIAGRAM

PCE, Jaipur Embedded System P a g e | 7

PROGRAM & PROCEDURE

.

Test IR sensor FC-51 with serial terminal (Test 01)

In the first demo, through the connection between the Arduino serial port and the PC, we will read

about the detection of the object.

Lets take a look to steps required by this 1 test:

i. We connect the OUT pin of the sensor to digital pin 2 of Arduino called IR.

ii. The setup() function is performed only once before the main loop. We insert here the

initialization code which enables serial port Arduino and sets the digital pin 2 as input.

iii. loop() is the main function and is cyclically repeated until you turn off the Arduino board.

We convert in C language the operation of the electronic circuit analyzed before. We save in

the variable detection the value taken from the pin IR with the specific function digitalRead,

if the value is low there is an object otherwise there isn’t.

E x p
 e

 r i m
 e

 n
 t N

 o
 : 54

PCE, Jaipur Embedded System P a g e | 8

IR sensor FC-51 and LED (Test 02)

In this test we associate an input to each operation state of IR sensor. The required components are:

 IR sensor FC-51;

 3 x Green LEDs;

 3 x R=150Ω;

 3 x White LEDs;

 3 x R=100Ω;

 3 x Red LEDs;
 3 x R=160Ω.

Remember that the I/O pins can absorb/disburse up to 40mA max, total maximum 200mA

(see ATmega328P datasheet at page 313).

Lets take a look to steps required by this demo:
1. We connect the OUT pin of the sensor to digital pin 2 of the Arduino. We define the digital pins of LEDs

as an array of pins, from 3 to 11 called LedPIN.

2. The setup() function is executed only once before the main loop. In addition to the initialization already

seen, we call the 9 LED as output using a for loop.

3. The loop() function is the main function and is cyclically repeated until you turn off the Arduino board. We

save in the variable detection the value taken from pin IR with the specific function digitalRead(). This

value can be low, if there is an object, or high if there is no object. We do this loop every millisecond.

PCE, Jaipur Embedded System P a g e | 9

Lets take a look to our code:

Successfully design the circuit of interfacing IR sensor to realize obstacle

detector in Proteus software and implement on hardware at Adriano
microcontroller kit.

VIVA QUESTIONS:

1. Can you explain the basic principle behind an IR sensor?

2. What components are typically found in an IR sensor module?

3. What role does the comparator play in the IR sensor circuit?

4. How does the IR sensor detect obstacles?

5. Describe the process of interfacing an IR sensor with a microcontroller.

6. What are the key considerations when choosing a microcontroller for

interfacing with an IR sensor?

7. How can you calibrate an IR sensor for optimal obstacle detection?

8. What are the potential challenges in interfacing multiple IR sensors in a

single project?

9. How can you differentiate between different types of obstacles detected by

the IR sensor?

10. Can you explain the significance of using interrupts in an IR sensor-

based obstacle detection system?

11. How would you handle noise and interference in the output of an IR

sensor?

12. Discuss the importance of feedback mechanisms in improving the

accuracy of obstacle detection.

13. How can you optimize the power consumption of an IR sensor-based

obstacle detection system?

14. What are some alternative sensor technologies that can be used

alongside or instead of IR sensors for obstacle detection?

15. Can you outline some real-world applications where IR sensor-based

obstacle detection systems are used?

CONCLUSION

E x p
 e r i m

 e
 n

 t N
 o

 : 4

Experiment No : 06

Write a program to implement

temperature measurement and

displaying the same on an LCD display.

DEPARTMENT OF ELECTRICAL ENGINEERING

EMBEDDED SYSTEMS

TITLE: Write a program to implement temperature

measurement and displaying the same on an LCD display.

COMPONENT

WORKING

Write a program to implement temperature measurement and displaying the same on an LCD

display. To interface an LM35 (or LM34) temperature sensor to the 8051 trainer.

 8051 trainer

 8051 assembler

 LM35 (or LM34)

 ADC804

 LM336-2.5

 10K POT

 1K, 1.5K, and 10K resistors

 8051 Trainer

 20x2 LCD DMC20261 from Optrex DMC series, or a compatible one.

 Dot Matrix LCD Module: Character-type DMC Series User's Manual by Optrex Corp.

M35 is an analog, linear temperature sensor whose output voltage varies linearly with change

in temperature. LM35 is three terminal linear temperature sensor from National

semiconductors. It can measure temperature from-55 degree celsius to +150 degree

celsius. The voltage output of the LM35 increases 10mV per degree Celsius rise in

temperature. LM35 can be operated from a 5V supply and the stand by current is less than

60uA. So we need about LM35 for this particular temperature display project using arduino

uno.

LM35 is an analog temperature sensor. This means the output of LM35 is an analog signal.

Microcontrollers don’t accept analog signals as their input directly. We need to convert this

analog output signal to digital before we can feed it to a microcontroller’s input. For this

purpose, we can use an ADC(Analog to Digital Converter).If we are using a basic

microcontroller like 8051, we need to use an external ADC to convert analog output from

LM35 to digital. We then feed the output of ADC (converted digital value) to input of 8051.

But modern day boards like Arduino and most modern day micro controllers come with

inbuilt ADC. Our arduino uno has an in built 10 bit ADC (6 channel). We can make use of

this in built ADC of arduino to convert the analog output of LM35 to digital output. Since

Arduino uno has a 6 channel inbuilt ADC, there are 6 analog input pins numbered from A0 to

A5. Connect analog out of LM35 to any of these analog input pins of arduino.

AIM

E x p
 e r i m

 e n
 t

N
 o

:

0
 6

CIRCUIT

LM35 is available in the market in 3 series variations – LM35A, LM35C and LM35D series.

The main difference between these 3 versions of LM35 IC are in their range of temperature

measurements. The LM35D series is designed to measure from 0 degree Celsius to 100

degree Celsius, whereas the LM35A series is designed to measure a wider range of -55

degree Celsius to 155 degree Celsius. The LM35C series is designed to measure from -40

degree Celsius to 110 degree Celsius.

Fig 1. LM35 and Arduino – Circuit Diagram

Connect LM35 to Arduino uno as shown in circuit diagram. The +5v for LM35 can be taken

from the +5v out pin of arduino uno. Also the ground pin of LM35 can be connected to GND

pin of arduino uno. Connect Vout (the analog out of LM35) to any of the analog input pin of

arduino uno. In this circuit diagram, we have connected Vout of LM35 to A1 of arduino.

Temperature Display on 16×2 LCD Module – using Arduino and lM35

Now lets go on to add a 16×2 LCD display with LM35 and Arduino – interface and lets

display the temperature values on this LCD display (instead of serial monitor). So we are

going to build none other than a standalone temperature display using arduino. Circuit

Diagram – LM35 and Arduino – Temperature Display on 16×2 LCD

Fig 2. LM35 and Arduino – Temperature Display on 16×2 LCD

E x p
 e r i m

 e n
 t

N
 o

:

0
 6

const int sensor=A1; // Assigning analog pin A1 to variable 'sensor'

float tempc; //variable to store temperature in degree Celsius

float tempf; //variable to store temperature in Fahreinheit

float vout; //temporary variable to hold sensor reading

void setup()

{

pinMode(sensor,INPUT); // Configuring pin A1 as input

Serial.begin(9600);

}

void loop()

{

vout=analogRead(sensor);

vout=(vout*500)/1023;

tempc=vout; // Storing value in Degree Celsius

tempf=(vout*1.8)+32; // Converting to Fahrenheit

The Program – LM35 and Arduino Interfacing

PROGRAM

E x p
 e r i m

 e n
 t

N
 o

:

0
 6

#include<LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

const int sensor=A1; // Assigning analog pin A1 to variable 'sensor'

float tempc; //variable to store temperature in degree Celsius

float tempf; //variable to store temperature in Fahreinheit

float vout; //temporary variable to hold sensor reading

void setup()

{

pinMode(sensor,INPUT); // Configuring pin A1 as input

Serial.begin(9600);

lcd.begin(16,2);

delay(500);

}

So that’s the arduino LM 35 code for reading temperature and displaying in degree Celsius
and Fahrenheit.

To build an Arduino LM35 temperature sensor with LCD display are shown in circuit Fig 2.

The arduino program for the circuit is given below.

The Program

Serial.print("in DegreeC=");

Serial.print("\t");

Serial.print(tempc);

Serial.println();

Serial.print("in Fahrenheit=");

Serial.print("\t");

Serial.print(tempf);

Serial.println();

delay(1000); //Delay of 1 second for ease of viewing

}

E x p
 e r i m

 e n
 t

N
 o

:

0
 6

RESULT

ORAL QUESTIONS

The program is very simple and self explanatory, if you have a basic idea of arduino sketches
and you already learned how to interface arduino and lcd module. In another step 7 Segment

display to display temperature measured using LM35 and Arduino. For displaying

temperature upto 3 digit values (100 degree Celsius or higher upto 999) with corresponding

unit (Celsius of Fahrenheit), its good to choose a 4 Digit 7 Segment Display unit.

Study and Demonstrate the LM35 Temperature senior on arduino Kit successfully

1. What is a transducer?

2. What is the form of the transducer output?

3. What is preprocessing of transducer signals to be fed into an ADC called?

4. The LM35 and LM34 produce a mV output for every degree of change in

temperature.

5. The LM35/LM34 is a (linear, nonlinear) device. Discuss the advantages of

linear devices and of nonlinear devices.

6. Explain signal conditioning and its role in data acquisition.

7. How does the LCD distinguish data from instruction codes when receiving information at its

data pin?

8. To send the instruction code 01 to clear the display, we must make RS = .

9. To send letter 'A' to be displayed on the LCD, we must make RS = .

10. What is the purpose of the E line? Is it an input or an output as far as the LCD is concerned?

11. When is the information (code or data) on the LCD pin latched into the LCD

void loop()
{

vout=analogRead(sensor);

vout=(vout*500)/1023;

tempc=vout; // Storing value in Degree Celsius

tempf=(vout*1.8)+32; // Converting to Fahrenheit

lcd.setCursor(0,0);

lcd.print("in DegreeC= ");

lcd.print(tempc);

lcd.setCursor(0,1);

lcd.print("in Fahrenheit=");

lcd.print(tempf);

delay(1000); //Delay of 1 second for ease of viewing in serial monitor

}

E x p
 e r i m

 e n
 t

N
 o

:

0
 6

https://www.circuitstoday.com/interfacing-lcd-to-arduino

E x p e r i m e n t N o : 0 6

D
IA

G
R

A
M

Experiment No: 7

Write a program for interfacing GAS

sensor and perform GAS leakage

detection.

DEPARTMENT OF ELECTRICAL ENGINEERING

Embedded System

Lab

PCE, Jaipur Embedded System P a g e | 2

TITLE: Write a program for interfacing GAS sensor and
perform GAS leakage detection.

APPRATUS

THEORY

Write a program for interfacing GAS sensor and perform GAS leakage detection.

1. Arduino Pro Mini

2. LPG Gas sensor Module

3. Buzzer

4. BC 547 Transistor

5. 16x2 LCD

6. 1K resistor

7. Bread board

8. 9 volt battery

9. Connecting wires

A) LPG Gas sensor module

This module contains a MQ3 sensor which actually detects LPG gas, a comparator (LM393) for
comparing MQ3 output voltage with reference voltage. It gives a HIGH output when LPG gas is
sensed. A potentiometer is also used for controlling sensitivity of gas sensing. This module is very
easy to interface with microcontrollers and arduino and easily available in market by name “LPG
Gas Sensor Module”. We can also build it by using LM358 or LM393 and MQ3.Near infrared region

— 700 nm to 1400 nm — IR sensors, fiber optic

AIM

E x p
 e r i m

 e
 n

 t N
 o

 : 7

PCE, Jaipur Embedded System P a g e | 3

The gas sensor MQ3 suitable for detecting of LPG, i-butane, propane, methane, alcohol, Hydrogen,
smoke etc. Since It is highly sensitive and gives fast response, we can take measurements as soon
as possible. This sensor can be used for gas leakage detection. The basic concept of an Infrared
Sensor which is used as Obstacle detector is to transmit an infrared signal, this infrared signal
bounces from the surface of an object and the signal is received at the infrared receiver.
At normal condition, sensor resistor will be high so voltage drop across the load will be low and it
will be a constant. f sensor senses flammable gases, resistance of sensor will drop. That means
more current will flow from load resistor. So the voltage across it increases. This output voltage
increases with increase in concentration of gas in air. The sensitivity of the gas sensor can be
adjusted using potentiometer. Refer MQ-3 datasheet for detailed information.
This Smoke Sensor (MQ3) Board has analog as well as digital output. For this tutorial we will use
analog output. Analog output pin needs to be connecting ADC channel 0 of atmega 32 breakout as
shown in hook up.

Fig : MQ-3 sensor schematic

 As MQ-3 sensor has heater inside, it is prefer to give power to the sensor from separate source.

 For stable operation sensor requires around 24 hour preheating.

 We can use Ultra AVR Development Board, Starter AVR or Atmega32 Breakout.

We have used a LPG gas sensor module to detect LPG Gas. When LPG gas leakage occurs, it gives a
HIGH pulse on its DO pin and arduino continuously reads its DO pin. When Arduino gets a HIGH
pulse from LPG Gas module it shows “LPG Gas Leakage Alert” message on 16x2 LCD and activates
buzzer which beeps again and again until the gas detector module doesn't sense the gas in
environment. When LPG gas detector module gives LOW pulse to arduino, then LCD shows “No LPG
Gas Leakage” message.

https://www.exploreembedded.com/wiki/images/3/3f/MQ-2.pdf
https://www.exploreembedded.com/product/Smoke%20Sensor%20(MQ2)%20board

PCE, Jaipur Embedded System P a g e | 4

As shown in the schematic diagram above, it contains Arduino board, LPG GAS Sensor Module,

buzzer and 16x2 LCD module. Arduino controls the whole process of this system like reading LPG Gas

sensor module output, sending message to LCD and activating buzzer. We can set sensitivity of this

sensor module by inbuilt potentiometer placed on it.

LPG gas sensor module's DO pin is directly connected to pin 18 (A4) of Arduino and Vcc and GND are

connected to Vcc and GND of arduino. LPG gas sensor module consist a MQ3 sensor which detects

LPG gas. This MQ3 sensor has a heater inside which needs some heater supply to heat up and it may

takes up to 15 minute to get ready for detecting LPG gas.

CIRCUIT DIAGRAM

PCE, Jaipur Embedded System P a g e | 5

A comparator circuit is used for converting Analog output of MQ3 in digital. A 16x2 LCD is connected

with arduino in 4-bit mode. Control pin RS, RW and En are directly connected to arduino pin 2, GND

and 3. And data pin D0-D7 are connected to 4, 5, 6, 7 of arduino. A buzzer is connected with arduino

pin number 13 through a NPN BC547 transistor having a 1 k resistor at its base.

WORKING

MQ3 gas sensor can be used to detect the presence of LPG, Propane and Hydrogen, also could be used

to detect Methane and other combustible steam, it is low cost and suitable for different application.

Sensor is sensitive to flammable gas and smoke. Smoke sensor is given 5 Volt to power it. Smoke

sensor indicate smoke by the voltage that it output more smoke more output. A potentiometer is

provided to adjust the sensitivity. Sn02 is the sensor used which is of low conductivity when the air is

clean. But when smoke exist sensor provides an Analog resistive output based on concentration of

smoke. The circuit has a heater. Power is given to heater by VCC and GND from power supply. The

circuit has a variable resistor. The resistance across the pin depends on the smoke in air in the sensor.

The resistance will be lowered if the content is more. And voltage is increased between the sensor and

load resistor.

The MQ3 has an electrochemical sensor, which changes its resistance for different concentrations of

varied gasses. The sensor is connected in series with a variable resistor to form a voltage divider circuit

, and the variable resistor is used to change sensitivity. When one of the above gaseous elements comes

in contact with the sensor after heating, the sensors resistance change. The change in the resistance

changes the voltage across the sensor, and this voltage can be read by a microcontroller. The voltage

value can be used to find the resistance of the sensor by knowing the reference voltage and the other

resistors resistance. The sensor has different sensitivity for different types of gasses.

WEIGHT SENSOR (LOAD CELL)

We should know ahead of time of measure of gas in the chamber, and for this reason the dimension of

gas present in the chamber must be observed persistently. We have utilized strain measure as a weight

sensor. The capacity of strain gage is to give yield voltage according to the power/weight connected to

it. Sensor changes over the connected power into comparing electrical flag. The yield of weight sensor

is in simple structure. It is given to a Digitizer board which accompanies this weight sensor. Capacity of

Digitizer board is to give advanced yield which is corresponding to simple information gotten from

weight sensor. This advanced yield is given to microcontroller for further handling. We have utilized a

weight sensor of 40 kg limit. So 40 kg is the greatest weight that can be connected to this weight sensor.

There are two flow charts for gas leakage detection and automatic gas booking which explain the

methodology of the operation as follows:

https://circuitdigest.com/article/16x2-lcd-display-module-pinout-datasheet

PCE, Jaipur Embedded System P a g e | 6

PROGRAM & PROCEDURE

In this model, gas spillage recognition has been given a most elevated need. MQ2 set in the region of

the gas chamber. In the appearance of spillage, the obstruction of the sensor diminishes expanding its

conductivity. Relating beat is sustained to microcontroller and at the same time switches on the ringer

and fumes fan which we can reset by a manual reset switch. Additionally a rationale high heartbeat (+5

V) is given as a hinder to INT0 stick of Microcontroller. Microcontroller communicates something

specific "EMERGENCY ALERT: LPG gas spillage found in your home" to required cell numbers by

means of GSM module and a similar will be shown on LCD.

The Program/Code

#include <SoftwareSerial.h>
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
SoftwareSerial mySerial(9, 10);
int sensor=7;
int speaker=8;
int gas_value,Gas_alert_val, Gas_shut_val;
in0t Gas_Leak_Status;
int sms_count=0;
void setup()
{
pinMode(sensor,INPUT);
pinMode(speaker,OUTPUT);
mySerial.begin(9600);
Serial.begin(9600);
lcd.begin(16,2);
delay(500);
}
void loop()
{
CheckGas();

PCE, Jaipur Embedded System P a g e | 7

CheckShutDown();
}
void CheckGas()
{
lcd.setCursor(0,0);
lcd.print("Gas Scan - ON");
Gas_alert_val=ScanGasLevel();
if(Gas_alert_val==LOW)
{
SetAlert(); // Function to send SMS Alerts
}}
int ScanGasLevel()
{
gas_value=digitalRead(sensor); // reads the sensor output (Vout of
LM35)
return gas_value; // returns temperature value in degree celsius
}
void SetAlert()
{
digitalWrite(speaker,HIGH);
while(sms_count<3) //Number of SMS Alerts to be sent
{
SendTextMessage(); // Function to send AT Commands to GSM module
}
Gas_Leak_Status=1;
lcd.setCursor(0,1);
lcd.print("Gas Alert! SMS Sent!");
}
void CheckShutDown()
{
if(Gas_Leak_Status==1)
{
Gas_shut_val=ScanGasLevel();
if(Gas_shut_val==HIGH)
{
lcd.setCursor(0,1);
lcd.print("No Gas Leaking");
digitalWrite(speaker,LOW);
sms_count=0;
Gas_Leak_Status=0;
}}}
void SendTextMessage()
{

mySerial.println("AT+CMGF=1"); //To send SMS in Text Mode
delay(1000);
mySerial.println("AT+CMGS=\"+919495xxxxxx\"\r"); // change to the

phone number you using

PCE, Jaipur Embedded System P a g e | 8

Important Aspects about the Program

When we develop critical systems like Gas Leakage Detector or similar systems like Fire Alarm

System, we need to monitor the sensor parameters continuously(24×7). So our system must monitor

“gas leak” continuously.This is achieved by scanning the sensor output (digital out of MQ5)

continuously inside the ScanGasLevel() subroutine. If you look into the program, the main function

loop() has only two subroutines – CheckGas() and CheckShutDown() – which are called repeatedly.

CheckGas() – is a subroutine which scans sensor output continuously and take actions if there occurs a

„gas leak‟ at any point of time. CheckShutDown() – is a subroutine to monitor the shut down process

and check if status of room is back to normal conditions (no gas leaking).

CheckGas() – is the function which monitors occurrence of a gas leak 24×7. This function fetches the

gas level measured by MQ35 (by reading digital out of MQ35 using digitalRead() command) and stores

it to the variable Gas_alert_val for comparison. If there is no „gas leak‟ – the sensor out will be HIGH.

If there occurs a „gas leak‟ at any point of time, the sensor out will immediately change to LOW status.

The statement if(Gas_alert_val==LOW) checks this and if a gas leak occurs, then an inner

subroutine SetAlert() will be invoked.

SetAlert() is the function that controls number of SMS alerts sent to each mobile number loaded in the

program. The number of SMS alerts sent can be altered by changing the stopping condition of while

loop. The stopping condition sms_count<3 – means 3 SMS alerts will be sent to each mobile number. If

you want to send 5 alerts, just change the stopping condition to sms_count<5 – you got it ? The

function to send SMS (using AT Commands) – SendTextMessage() will be called 3 times if SMS

alert count is 3. This function SendTextMessage() will be invoked as many times as the number SMS

alerts set in the program. In addition to sending SMS alerts, this subroutine also controls the sound

alarm. The alarm is invoked using command digitalWrite(speaker,HIGH) – which will activate the

speaker connected at pin 8 of arduino.

CheckShutDown() – is the function which monitors if gas leak was shut down. We need to entertain

this function only if a „gas leak‟ has occurred. To limit the entry to the statements inside this routine,

we have introduced a variable Gas_Leak_Status. This variable value will be set to value 1 when a gas

leak occurs (check the statement inside SetAlert()). The statements inside CheckShutDown() will be

executed only if the value of Gas_Leak_Status==1. (If there was no gas leak occurred, we don‟t need

to waste time executing ShutDown checking statements). We consider the „gas leak‟ has been

eliminated once room temperature is back to normal.

delay(1000);
mySerial.println("Gas Leaking!");//the content of the message
delay(200);
mySerial.println((char)26);//the stopping character
delay(1000);
mySerial.println("AT+CMGS=\"+918113xxxxxx\"\r"); // change to the

phone number you using
delay(1000);
mySerial.println("Gas Leaking!");//the content of the message
delay(200);
mySerial.println((char)26);//the message stopping character
delay(1000);
sms_count++;

}

PCE, Jaipur Embedded System P a g e | 9

CONCLUSION

So if our variable Gas_shut_val falls back to HIGH status, we consider gas leak has been eliminated

and surroundings are safe. The subroutine has statement to stop the gas leakage alarm (refer statement –

digitalWrite(speaker,LOW) – which cuts the supply to pin 8 of arduino and stops the sound alarm)

which will be executed when gas leak is eliminated completely (as the status of Gas_shut_val ==

HIGH). We start our Gas Leakage monitoring again with SMS Alerts active! (We reset

the Gas_Leak_Status variable and sms_count variable back to zero – which are essential variable

conditions for monitoring gas leak again and to send alert sms if gas leak repeats.

Successfully design the circuit of interfacing GAS sensor and perform GAS leakage detection and

implement on hardware at Adriano microcontroller kit.

VIVA QUESTIONS:

1. Can you explain the principle behind gas sensor operation?

2. What is the significance of interfacing a gas sensor with a microcontroller?

3. How does the microcontroller communicate with the gas sensor?

4. What are the key components required to interface a gas sensor with a microcontroller?

5. How do you ensure proper calibration of the gas sensor in the setup?

6. What factors can affect the accuracy of gas leakage detection using the sensor?

7. Can you explain the steps involved in programming the microcontroller for gas leakage

detection?

8. What methods can be employed to visualize the gas leakage detection results?

9. How do you handle potential false positives or false negatives in gas leakage detection?

10. What safety precautions should be taken while handling gas sensors and conducting gas

leakage detection experiments?

11. How do you select the appropriate gas sensor for a specific application?

12. What measures can be implemented to enhance the sensitivity of the gas sensor?

13. Can you discuss any potential limitations or challenges encountered while interfacing gas

sensors with microcontrollers?

14. How do you troubleshoot common issues encountered during the setup or operation of the

gas sensor system?

15. In what ways can the gas leakage detection program be optimized for better efficiency and

performance?

E x p
 e r i m

 e
 n

 t N
 o

 : 7

Experiment No: 8

Write a program to design the Traffic

Light System and implement the same

using suitable hardware.

DEPARTMENT OF ELECTRICAL ENGINEERING

Embedded System

Lab

PCE, Jaipur Embedded System P a g e | 1

TITLE: Write a program to design the Traffic Light System
and implement the same using suitable hardware.

APPRATUS

DEFINATION

THEORY

Write a program to design the Traffic Light System

1) ATMEGA16 microcontroller.

2) LED

3) Crystal Oscilator

4) Resistor

5) Capacitors

6) Kit power supply or Dual power supply with +/- 12volt/ 200mA.

7) Proteus Software

How to interface an LED matrix with a micro-controller and use the same to display patterns on the matrix
with a delay.

ABOUT MICROCONTROLLERS FROM THE AVR FAMILY:

The AVR architecture is based upon modified Harvard architecture where program and data are stored in
separate physical memory systems. The AVR family can be briefly classified as

 Tiny AVR
 Mega AVR
 XMEGA AVR
 Application specific AVR
 FPSLIC
 32-bit AVR

Atmel's AVRs have a two stage, single level pipeline design. This means the next machine instruction is

fetched as the current one is executing. Most instructions take just one or two clock cycles, making AVRs
relatively fast among the eight-bit microcontrollers. The AVR processors were designed for efficient
execution of compiled C code in mind and have several built-in pointers for the task.

AIM

E x p
 e r i m

 e
 n

 t N
 o

 : 8

PCE, Jaipur Embedded System P a g e | 2

KNOWLEDGE ON ATMEGA16

ATmega16 is an 8-bit high performance microcontroller from Atmel’s Mega AVR family with low power
consumption. The architecture of ATmega16 is based on enhanced RISC (Reduced Instruction Set
Computing) architecture with 131 powerful instructions. Most of the instructions are executed in one
machine cycle. It can work on a maximum frequency of 16MHz.

FEATURES OF ATMEGA 16

a) 16 kilo bytes of Flash memory.

b) 512 bytes of EEPROM.

c) 1 kilo bytes of SRAM.

d) 131 instructions set.

e) 32 x 8 bit general purpose working registers.

f) On chip 2 cycle multiplier.

g) Programming locks for software security.

h) Two 8-bit timers.

i) One 16 bit timer.

j) 8 channel 10-bit ADC.

k) On chip Analog comparator.

l) Internal calibrated RC Oscillator.

E x p
 e r i m

 e
 n

 t N
 o

 : 4

PCE, Jaipur Embedded System P a g e | 3

m) 32 programmable I/O lines.

n) Programmable serial USART.

o) Max Speed : 16 MHz(ATmega16).

p) Watchdog timer.

q) USB controller support.

r) Ethernet controller support.

s) LCD controller support.

t) DMA controller.

BASIC KNOWLEDGE OF LEDs

Light Emitting Diode (LED) is a diode that will give off visible light when it is energized. In any forward-biased
p-n junction there is, within the structure and primarily close to the junction, a recombination of holes and
electrons. This recombination requires that the energy possessed by the unbound free electron be
transferred to another state. In all semiconductor p-n junctions, some of this energy will be given off as heat
and some in the form of photons. In materials, such as gallium phosphide (GaP) or gallium arsenide
phosphide (GaAsP), the number of photons of light energy emitted is sufficient to create a visible light
source. There are also two-lead LED lamps that contain two LEDs, so that a reversal in biasing will change
the colour from green to red, or vice versa. LEDs are presently available in red, green, yellow, orange, and
white. In general, LEDs operate at voltage levels from 1.7 to 3.3 V, which makes them completely
compatible with solid-state circuits. They have a fast response time (nanoseconds) and offer good contrast
ratios for visibility. The power requirement is typically from 10 to 150 mW with a lifetime of 100,000 hours.
Their semiconductor construction adds a significant ruggedness factor.
Typical characteristics of a semiconductor diode is shown below:

PARAMETER CHARACTERISTICS UNIT

Power dissipation 110 MW

Forward Current 40 MA

Peak Forward

current(f=1 KHz,

DF=10%)

200

MA

Lead Soldering

Time at 2600C

5

SEC

Operating

Temperature

-40 TO +100

0 C

Storage

Temperature

-40 TO +100

0 C

PCE, Jaipur Embedded System P a g e | 4

BLOCK DIAGRAM

E x p
 e r i m

 e
 n

 t N
 o

 : 4

PCE, Jaipur Embedded System P a g e | 5

CONCLUSION

Algorithm for Programming ATmega16:

Successfully design the circuit of Traffic Light System in Proteus software and implement on hardware at
microcontroller kit.

VIVA QUESTIONS:

1. Can you explain the basic concept behind a traffic light system?

2. What are the essential components required to build a traffic light system?

3. How does the program determine the timing for each signal in the traffic light
system?

PROCEDURE

E x p
 e r i m

 e
 n

 t N
 o

 : 4

PCE, Jaipur Embedded System P a g e | 6

4. Can you explain the algorithm used to control the sequence of signals in the
traffic light system?

5. How does the hardware interface with the program to control the lights?

6. What safety measures are implemented in the program to ensure proper
functioning of the traffic light system?

7. How does the program handle emergency situations, such as power outages
or hardware failures?

8. Can you discuss any optimizations made in the program to improve the
efficiency of the traffic light system?

9. How do you ensure synchronization between multiple traffic light systems in
a network?

10. What methods are employed to detect and resolve conflicts in the traffic
flow using this system?

11. Can you explain the role of sensors, if any, in the traffic light system?

12. How does the program adapt to varying traffic conditions, such as rush
hour or late-night traffic?

13. What considerations are taken into account regarding visibility and
readability of the signals?

14. Can you discuss any environmental considerations in the design and
implementation of the traffic light system?

15. How do you test the reliability and accuracy of the program in simulating
real-world traffic scenarios?

Experiment No: 9

Write a program for interfacing finger

print sensor

DEPARTMENT OF ELECTRICAL ENGINEERING

Embedded System

Lab

PCE, Jaipur Embedded System P a g e | 2

AIM

APPRATUS

THEORY

Write a program for interfacing finger print sensor.

1) Ardunio kit

2) DSO

3) GT511C3 Finger Print Sensor

4) 16x2 LCD screen

5) Pot – 10k and 1k,10k,22k resistors

6) Push button

7) Kit power supply or Dual power supply with +/- 12volt/ 200mA.

8) Proteus Software (Test in software form)

9) Connecting code and DSO Probe

A) Introduction

Biometrics has been used as a reliable authentication system for a long time now. Today there exist
complex biometric systems which can identify a person by his heart beat rhythm or even by his
DNA. Other feasible methods include voice recognition, Face recognition, Iris scanning and Finger
print Scanning. Out of which the finger print recognition is the most widely used method, we can
find it from a simple attendance system to smart phones to Security checks and much more.

In this experiment we will learn how to use the popular GT511C3 Finger Print Sensor (FPS) with
Arduino. There are many FPS available and we have already learnt how to use them to build
designs like Attendance system, Voting Machine, Security system etc. But the GT511C3 is more
advanced with high accuracy and faster response time, so we will learn how to use it with Arduino
to enroll finger prints on it and then detect the fingerprints whenever required. So let’s get
started.

B) GT511C3 Fingerprint Sensor (FPS) Module

Before diving into the project let us understand about the GT511C3 fingerprint sensor Module and
how it works. This sensor is very different form the Capacitive and Ultrasonic Fingerprint sensor
that are commonly used in our smart phones. The GT511C3 is an optical Fingerprint sensor,
meaning it relies on images of your fingerprint to recognize its pattern. Yes you read that right, the

TITLE: Write a program for interfacing finger print sensor

E x p
 e r i m

 e
 n

 t N
 o

 : 9

https://circuitdigest.com/microcontroller-projects/raspberry-pi-and-opencv-based-face-recognition-system
https://circuitdigest.com/microcontroller-projects/fingerprint-attendance-system-using-arduino-uno
https://circuitdigest.com/microcontroller-projects/fingerprint-based-biometric-voting-machine-arduino
https://circuitdigest.com/microcontroller-projects/fingerprint-based-biometric-security-system-arduino-uno

PCE, Jaipur Embedded System P a g e | 3

sensor actually has a camera inside it which takes pictures of your fingerprint and then processes
these images using powerful in-built ARM Cortex M3 IC. The below image shows the front and
back side of the sensor with pinouts.

As you can see the sensor has a camera (black spot) surrounded by blue LEDs, these LEDs have to
be lit up to take a clear image of the fingerprint. These images are then processed and converted
into binary value by using the ARM Microcontroller coupled with EEPROM. The module also has a
green color SMD LED to indicate power. Each fingerprint image is of 202x258 pixels with a
resolution of 450dpi. The sensor can enroll upto 200 fingerprints and for each finger print
template it assigns an ID form 0 to 199. Then during detection it can automatically compare the
scanned fingerprint with all 200 templates and if a match is found it gives the ID number of that
particular fingerprint using the Smack Finger 3.0 Algorithm on the ARM Microcontroller. The sensor
can operate from 3.3V to 6V and communicates through Serial communication at 9600. The
communication pins (Rx and Tx) is said to be only 3.3V tolerant, however the datasheet does not
specify much about it. The pin-out of a GT511C3 FPS is shown below.

Apart from serial communication the module can also be directly interfaced to computer though
USB connection using the pins shown in previous image. Once connected to computer the module
can be controlled using the SDK_DEMO.exe application which can be downloaded from the link.
This application allows the user to enroll/verify/delete fingerprints and also to recognize
fingerprints. The software can also help you to read the image captured by the sensor which is
worth giving it a try. Alternatively you can also use this Software even if the sensor is connected
with Arduino, we will discuss on this later in this article.

https://circuitdigest.com/tutorial/serial-communication-protocols
https://circuitdigest.com/sites/default/files/GT-511C3_SDK_20130410.zip

PCE, Jaipur Embedded System P a g e | 4

Another interesting feature about the sensor is the metal casing around sensing region. As I told
earlier the blue LED has to be turned on for the sensor to work. But in applications where the
sensor should actively wait for a fingerprint it is not possible to keep the LED turned on always
since it will heat up the sensor and thus damage it. Hence in those cases the metal casing can be
wired to a capacitive touch input pin of a MCU to detect if it is being touched. If yes the LED can
be turned on and the sensing process can be started. This method is not demonstrated here as it is
outside the scope of this article.
When operating at 3.3V the sensor consumes about 130mA. It requires nearly 3 seconds for
enrolling a finger and 1 second to identify it. However if the enrolled template count is less the
recognition speed will be high. For more details about the sensor you can refer to
this datasheet from ADH-Tech who is the official manufacturer of the module. There are different
types of infrared transmitters depending on their wavelengths, output power and response time. A
simple infrared transmitter can be constructed using an infrared LED, a current limiting resistor and
a power supply. The schematic of a typical IR transmitter is shown below.

 CIRCUIT DIAGRAM

The GT511C3 FPS has two power pins which can be powered by +5V pin of Arduino and two

communication pins Rx and Tx which can be connected to any digital pin of Arduino for serial

communication. Additionally we have also added a push button and a LCD to display the sensor

status. The complete circuit diagram for interfacing GT511C3 FPS with Arduino can be found

below.

http://cdn.sparkfun.com/datasheets/Sensors/Biometric/GT-511C3_datasheet_V2.1_20161025.pdf

PCE, Jaipur Embedded System P a g e | 5

Since the Rx and Tx pins are 3.3V tolerant we have used a potential divider on the Rx side to

convert 5V to 3.3V. The 10k resistor and 22k resistor converts the 5V signal from the Arduino Tx

pin to 3.3V before it reaches the Rx pin of the FPS. The Sensor can also be powered by 3.3V but

make sure your Arduino can source enough current for the sensor. We have connected the LCD in 4-

bit mode powered by 5V pin of Arduino. A push button is connected to pin D2 which when

pressed will put the program in enroll mode where the user can enroll new finger. After enrolling

the program will remain in scanning mode to scan for any finger touching the sensor.

PROGRAM & PROCEDURE

Our aim here is to write a program that will enroll a finger when a button is pressed and display the

ID number of the finger that is already enrolled. We should also be able to display all information on

the LCD to enable the project to be a stand-alone one. The complete code to do the same is give at

the bottom of this page. Here I am breaking the same into small snippets to help you understand

better. As always we begin the program by including the required libraries, here we will need the

FPS_GT511C3 library for our FPS module, Software serial to use D4 and D5 on serial

communication and Liquid crystal for LCD interfacing. Then we need to mention to which pins the

FPS and LCD is connected to. If you had followed the circuit diagram as such then it is 4 and 5 for

FPS and D6 to D11 for LCD. The code for the same is shown below

#include "FPS_GT511C3.h" //Get library from https://github.com/sparkfun/Fingerprint_Scanner-
TTL
#include "SoftwareSerial.h" //Software serial library
#include <LiquidCrystal.h> //Library for LCD
FPS_GT511C3 fps(4, 5); //FPS connected to D4 and D5
const int rs = 6, en = 7, d4 = 8, d5 = 9, d6 = 10, d7 = 11; //Mention the pin number for LCD
connection
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);//Initialize LCD method

https://circuitdigest.com/electronic-circuits/potential-voltage-divider-circuit-diagram
https://circuitdigest.com/electronic-circuits/push-button-led-circuit

PCE, Jaipur Embedded System P a g e | 6

Inside the setup function, we display some introductory message on the LCD and then initialize the

FPS module. The command fps.SetLED(true) will turn on the blue LED on the sensor, you can turn

it off by fps.SetLED(false) when not required as it would heat up the sensor if left on continuously.

We have also made the pin D2 as input pin and connected it to internal pull-up resistor so as to

connect a push button to the pin.

void setup()
{

Serial.begin(9600);
lcd.begin(16, 2); //Initialise 16*2 LCD
lcd.print("GT511C3 FPS"); //Intro Message line 1
lcd.setCursor(0, 1);
lcd.print("with Arduino"); //Intro Message line 2
delay(2000);
lcd.clear();
fps.Open(); //send serial command to initialize fp
fps.SetLED(true); //turn on LED so fps can see fingerprint
pinMode(2,INPUT_PULLUP); //Connect to internal pull up resistor as input pin

}

Inside the void loop function we have to check if the button is pressed, if pressed we will enroll a

new finger and save its template with an ID number by using the enroll function. If not we will keep

waiting for a finger to be pressed in the sensor. If pressed we will indentify the fingerprint by

comparing it to all enrolled fingerprints template using the 1:N method. Once the ID number is

discovered we will display welcome followed by the ID number. If the finger print did not match

with any of the enrolled fingers the id count will be 200, in that case we will display welcome

unknown.

.

if (digitalRead(2))//If button pressed

{

Enroll(); //Enroll a fingerprint

}
// Identify fingerprint test

if (fps.IsPressFinger())

{

fps.CaptureFinger(false);

int id = fps.Identify1_N();

lcd.clear();

lcd.print("Welcome:");

if (id==200) lcd.print("Unkown "); //If not recognised lcd.print(id);

delay(1000);
}

The enroll function would have to take three sample inputs to enroll one finger successfully. Once

enrolled a template for that particular finger will be created which will not be deleted unless the user

forced it though HEX commands. The code to enroll a finger is shown below. The method Is Press

Finger is used to check if a finger is detected, if yes then the image is captured using Capture

Finger and then finally Enroll1, Enroll2 and Enroll3 is used for three different samples to

successfully enroll one finger.

PCE, Jaipur Embedded System P a g e | 7

.
The LCD displays the ID number of the finger if enrolled successfully else it would display a failure

message with code.Code 1 means the finger print was not captured clearly and hence you have to try

again. Code 2 is a memory fail indication and code 3 is to indicate that the finger has already been

enrolled.

E x p
 e r i m

 e n
 t N

 o
 : 9

PCE, Jaipur Embedded System P a g e | 8

Working of GT511C3 Finger Print Sensor with Arduino

Upload the code to Arduino and power it up, I am just using the micro-usb port to power the project.

On booting we should see the intro message on the LCD and then it should display “Hi!”. This

means that FPS is ready to scan for finger, if any enrolled finger is pressed it would say “Welcome”

followed by the ID number of that finger as shown below. If a new finger has to be enrolled then we

can use the push button to get into enroll mode and follow the LCD instruction to enroll a finger.

After the enrolling process is complete the LCD will display “Hi!..” again to indicate that it is read to

indentify fingers again. The complete working can be found at the video linked below.

WORKING

PCE, Jaipur Embedded System P a g e | 9

CODE
* Arduino with GT511C2 FingerPrint Sensor (FPS)
* Code to enroll and Detect Fingers
* For: www.circuitdigest.com
* Dated: 6-5-19
* Code By: Aswinth
*
* Connect Tx of FPS to Arduino Pin D4 and Rx of FPS to D5
*/

#include "FPS_GT511C3.h" //Get library from https://github.com/sparkfun/Fingerprint_Scanner-TTL
#include "SoftwareSerial.h" //Software serial library
#include <LiquidCrystal.h> //Library for LCD
FPS_GT511C3 fps(4, 5); //FPS connected to D4 and D5
const int rs = 6, en = 7, d4 = 8, d5 = 9, d6 = 10, d7 = 11; //Mention the pin number for LCD connection
LiquidCrystal lcd(rs, en, d4, d5, d6, d7);//Initialize LCD method
void setup()
{

Serial.begin(9600);
lcd.begin(16, 2); //Initialise 16*2 LCD
lcd.print("GT511C3 FPS"); //Intro Message line 1
lcd.setCursor(0, 1);
lcd.print("with Arduino"); //Intro Message line 2
delay(2000);
lcd.clear();
fps.Open(); //send serial command to initialize fps
fps.SetLED(true); //turn on LED so fps can see fingerprint
pinMode(2,INPUT_PULLUP); //Connect to internal pull up resistor as input pin

}
void loop()
{

if (digitalRead(2)==0)//If button pressed
{
Enroll(); //Enroll a fingerprint
}

// Identify fingerprint test
if (fps.IsPressFinger())
{

fps.CaptureFinger(false);
int id = fps.Identify1_N();
lcd.clear();
lcd.print("Welcome:");

if (id==200) lcd.print("Unkown "); //If not recognised
lcd.print(id);
delay(1000);

}
else
{

lcd.clear(); lcd.print("Hi! "); //Display hi when ready to scan
}

}
void Enroll() //Enrol function from library exmaple program
{

int enrollid = 0;
bool usedid = true;
while (usedid == true)
{

usedid = fps.CheckEnrolled(enrollid);
if (usedid==true) enrollid++;

}
fps.EnrollStart(enrollid);

http://www.circuitdigest.com/
https://github.com/sparkfun/Fingerprint_Scanner-TTL%C2%A0

PCE, Jaipur Embedded System P a g e | 10

// enroll
lcd.clear();
lcd.print("Enroll #");
lcd.print(enrollid);
while(fps.IsPressFinger() == false) delay(100);
bool bret = fps.CaptureFinger(true);
int iret = 0;
if (bret != false)
{

lcd.clear();
lcd.print("Remove finger");
fps.Enroll1();
while(fps.IsPressFinger() == true) delay(100);
lcd.clear(); lcd.print("Press again");
while(fps.IsPressFinger() == false) delay(100);
bret = fps.CaptureFinger(true);
if (bret != false)
{

lcd.clear(); lcd.print("Remove finger");
fps.Enroll2();
while(fps.IsPressFinger() == true) delay(100);
lcd.clear(); lcd.print("Press yet again");
while(fps.IsPressFinger() == false) delay(100);
bret = fps.CaptureFinger(true);
if (bret != false)
{

lcd.clear(); lcd.print("Remove finger");
iret = fps.Enroll3();
if (iret == 0)
{

lcd.clear(); lcd.print("Enrolling Success");
}
else
{

lcd.clear();
lcd.print("Enroll Failed:");
lcd.print(iret);

}
}
else lcd.print("Failed 1");

}
else lcd.print("Failed 2");

}
else lcd.print("Failed 3");

}

CONCLUSION

Successfully design the circuit of interfacing finger print sensor in Proteus software and implement

on hardware at Adriano microcontroller kit.

VIVA QUESTIONS:

1. Can you explain the basic working principle of a fingerprint sensor?

2. What are the main components required to interface a fingerprint sensor with a

microcontroller?

3. How does the fingerprint recognition process occur in the sensor?

4. What considerations should be taken into account when choosing a fingerprint sensor for

interfacing with a microcontroller?

5. Can you outline the steps involved in setting up the hardware for interfacing a fingerprint

sensor with a microcontroller?

6. How does the microcontroller communicate with the fingerprint sensor? Describe the

PCE, Jaipur Embedded System P a g e | 11

communication protocol.

7. What are the key challenges in interfacing a fingerprint sensor with a microcontroller, and

how can they be overcome?

8. What programming language and IDE would you recommend for writing the program to

interface with the fingerprint sensor? Why?

9. What are the different methods for storing and managing fingerprint data in the

microcontroller's memory?

10. How can you ensure the security and integrity of the fingerprint data stored in the

microcontroller?

11. Can you explain the steps involved in capturing and processing fingerprint data in the

program?

12. How can you optimize the performance of the fingerprint recognition algorithm in terms of

speed and accuracy?

13. What measures can be taken to handle errors and exceptions that may occur during

fingerprint recognition?

14. How would you test the functionality and reliability of the program for interfacing with the

fingerprint sensor?

15. Can you suggest any potential enhancements or additional features that could be

implemented in the program to improve its usability or security?

Experiment No: 10

Write a program for Master Slave

Communication between using suitable

hardware and using SPI

DEPARTMENT OF ELECTRICAL ENGINEERING

Embedded System

Lab

PCE, Jaipur Embedded System P a g e | 2

TITLE: Write a program for Master Slave Communication
between using suitable hardware and using SPI

APPRATUS

THEORY

Write a program for Master Slave Communication between using suitable hardware and using SPI

1) Ardunio kit

2) DSO

3) Breadboard

4) Resistor

5) Kit power supply or Dual power supply with +/- 12volt/ 200mA.

6) Proteus Software

7) Connecting code and DSO Probe

A) Introduction

Serial Peripheral Interface or SPI is a synchronous serial communication protocol that provides full
– duplex communication at very high speeds. Serial Peripheral Interface (SPI) is a master – slave
type protocol that provides a simple and low cost interface between a microcontroller and its
peripherals. SPI Interface bus is commonly used for interfacing microprocessor or microcontroller
with memory like EEPROM, RTC (Real Time Clock), ADC (Analog – to – Digital Converters), DAC
(Digital – to – Analog Converters), displays like LCDs, Audio ICs, sensors like temperature and
pressure, memory cards like MMC or SD Cards or even other microcontrollers.
We have seen about UART in the previous article. In UART (or any common serial port), where the
communication happens over RX and TX line, there is no clock signal i.e. it is an asynchronous
communication. In this type of communication, there is no control over the data sent or whether
the transmitter and receiver have same data rates.
In order to overcome this, UART uses synchronisation bits i.e. Start bit and Stop bits and also a pre
agreed data transfer speeds (typically 9600 bps). If the baud rates of transmitter and receiver are
not matched, the data sent from the transmitter will not reach the receiver properly and often
garbage or junk values are received.
For short distance communication, Synchronous Serial Communication would be a better choice
and in that Serial Peripheral Interface or SPI in particular is the best choice. When we say short
distance communication, it often means communication with in a device or between the devices
on the same board (PCB).

AIM

E x p
 e

 r i m
 e

 n
 t N

 o
 : 1

0

PCE, Jaipur Embedded System P a g e | 3

The other type of Synchronous Serial Communication Protocol is I2C (Inter – Integrated
Communication, often called as I Squared C or I Two C). For this article, we will focus on SPI. SPI is a
Synchronous type serial communication i.e. it uses a dedicated clock signal to synchronise the
transmitter and receiver or Master and Slave, speaking in SPI terms. The transmitter and receiver
are connected with separate data and clock lines and the clock signal will help the receiver when to
look for data on the bus.

The clock signal must be supplied by the Master to the slave (or all the slaves in case of multiple
slave setup). There are two types of triggering mechanisms on the clock signal that are used to
intimate the receiver about the data: Edge Triggering and Level Triggering. The most commonly
used triggering is edge triggering and there are two types: rising edge (low to high transition on the
clock) and falling edge (high to low transition). Depending on how the receiver is configured, up on
detecting the edge, the receiver will look for data on the data bus from the next bit. Since both the
clock and data are sent by the Master (or transmitter), we need not worry about the speed of data
transfer. What makes SPI so popular among other Synchronous Serial Communication protocols (or
any serial communication for that matter) is that it provides a high speed secured data transfer
with reasonably simple hardware like shift registers at relatively less cost. SPI or Serial Peripheral
Interface was developed by Motorola in the 1980’s as a standard, low – cost and reliable interface
between the Microcontroller (microcontrollers by Motorola in the beginning) and its peripheral ICs.
Because of its simple interface, flexibility and ease of use, SPI has become a standard and soon
other semiconductor manufacturers started implementing it in their chips. In SPI protocol, the
devices are connected in a Master – Slave relationship in a multi – point interface. In this type of
interface, one device is considered the Master of the bus (usually a Microcontroller) and all the
other devices (peripheral ICs or even other Microcontrollers) are considered as slaves.

I

PCE, Jaipur Embedded System P a g e | 4

SPI protocol, there can be only one master but many slave devices.The SPI bus consists of 4 signals
or pins. They are
Master – Out / Slave – In (MOSI)
Master – In / Slave – Out (MISO)
Serial Clock (SCLK) and

Chip Select (CS) or Slave Select (SS)
Since, the SPI bus is implemented using 4 signals or wires, it is sometimes called as Four Wire
Interface. Let us first see a simple interface between a single master and single slave that are
connected using SPI protocol and then we will explain about the 4 wires.
The following image depicts a Master (Processor) connected to a Slave (Peripheral) using SPI bus.

Master – Out / Slave – In or MOSI, as the name suggests, is the data generated by the Master and
received by the Slave. Hence, MOSI pins on both the master and slave are connected together.
Master – In / Slave – Out or MISO is the data generated by Slave and must be transmitted to
Master.
MISO pins on both the master and slave are ties together. Even though the Signal in MISO is
produced by the Slave, the line is controlled by the Master. The Master generates a clock signal at
SCLK and is supplied to the clock input of the slave. Chip Select (CS) or Slave Select (SS) is used to
select a particular slave by the master. Since the clock is generated by the Master, the flow of data
is controlled by the master. For every clock cycle, one bit of data is transmitted from master to
slave and one bit of data is transmitted from slave to master.

This process happen simultaneously and after 8 clock cycles, a byte of data is transmitted in both
directions and hence, SPI is a full – duplex communication. If the data has to be transmitted by only
one device, then the other device has to send something (even garbage or junk data) and it is up to
the device whether the transmitted data is actual data or not. This means that for every bit
transmitted by one device, the other device has to send one bit data i.e. the Master simultaneously
transmits data on MOSI line and receive data from slave on MISO line. If the slave wants to
transmit the data, the master has to generate the clock signal accordingly by knowing when the
slave wants to send the data in advance. If more than one slave has to be connected to the master,
then the setup will be something similar to the following image.
Even though multiple slaves are connected to the master in the SPI bus, only one slave will be
active at any time. In order to select the slave, the master will pull down the SS (Slave Select) or CS
(Chip Select) line of the corresponding slave. Hence, there must by a separate CS pin on the Master
corresponding to each of the slave device. We need to pull down the SS or CS line to select the
slave because this line is active low.

PCE, Jaipur Embedded System P a g e | 5

SPI Hardware
The hardware requirement for implementing SPI is very simple when compared to UART and I2C.
Consider a Master and a single Slave are connected using SPI bus. The following image shows the
minimal system requirements for both the devices.

From the image, the Master device consists of a Shift Register, a data latch and a clock generator.
The slave consists of similar hardware: a shift register and a data latch. Both the shift registers are
connected to form a loop. Usually, the size of the register is 8 – bits but higher size registers of 16 –
bits are also common. During the positive edge of the clock signal, both the devices (master and
slave) read input bit into LSB of the register. During the negative cycle of the clock signal, both the
master and slave places a bit on its corresponding output from the MSB of the shift register. Hence,
for each clock cycle, a bit of data is transferred in each direction i.e. from master to slave and slave
to master. So, for a byte of data to be transmitted from each device, it will take 8 clock cycles.

SPI Modes of Operation
We have already seen that it is the job of the Master device to generate the clock signal and
distribute it to the slave in order to synchronise the data between master and slave. The work of
master doesn’t end at generating clock signal at a particular frequency. In fact, the master and
slave have to agree on certain synchronization protocols. For this, two features of the clock i.e. the
Clock Polarity (CPOL or CKP) and Clock Phase (CPHA) come in to picture. Clock Polarity determines
the state of the clock. When CPOL is LOW, the clock generated by the Master i.e. SCK is LOW when
idle and toggles to HIGH during active state (during a transfer).

PCE, Jaipur Embedded System P a g e | 6

SPI WORKING

Similarly, when CPOL is HIGH, SCK is HIGH during idle and LOW during active state. Clock Phase
determines the clock transition i.e. rising (LOW to HIGH) or falling (HIGH to LOW), at which the data
is transmitted. When CPHA is 0, the data is transmitted on the rising edge of the clock. Data is
transmitted on the falling edge when CPHA is 1. Depending on the values of Clock Polarity (CPOL)
and Clock Phase (CPHA), there are 4 modes of operation of SPI: Modes 0 through 3.
Mode 0:
Mode 0 occurs when Clock Polarity is LOW and Clock Phase is 0 (CPOL = 0 and CPHA = 0). During
Mode 0, data transmission occurs during rising edge of the clock.

Mode 1:
Mode 1 occurs when Clock Polarity is LOW and Clock Phase is 1 (CPOL = 0 and CPHA = 1). During
Mode 1, data transmission occurs during falling edge of the clock.

Mode 2:
Mode 2 occurs when Clock Polarity is HIGH and Clock Phase is 0 (CPOL = 1 and CPHA = 0). During
Mode 2, data transmission occurs during rising edge of the clock.

Mode 3:
Mode 3 occurs when Clock Polarity is HIGH and Clock Phase is 1 (CPOL = 1 and CPHA = 1). During
Mode 3, data transmission occurs during rising edge of the clock.

THE CLOCK
The clock signal synchronizes the output of data bits from the master to the sampling of bits by the
slave. One bit of data is transferred in each clock cycle, so the speed of data transfer is determined
by the frequency of the clock signal. SPI communication is always initiated by the master since the
master configures and generates the clock signal. Any communication protocol where devices
share a clock signal is known as synchronous. SPI is a synchronous communication protocol. There
are also asynchronous methods that don’t use a clock signal. For example, in UART communication,
both sides are set to a pre-configured baud rate that dictates the speed and timing of data
transmission. The clock signal in SPI can be modified using the properties of clock polarity and clock
phase. These two properties work together to define when the bits are output and when they are
sampled. Clock polarity can be set by the master to allow for bits to be output and sampled on
either the rising or falling edge of the clock cycle. Clock phase can be set for output and sampling to
occur on either the first edge or second edge of the clock cycle, regardless of whether it is rising or
falling.

PCE, Jaipur Embedded System P a g e | 7

SLAVE SELECT
The master can choose which slave it wants to talk to by setting the slave’s CS/SS line to a low
voltage level. In the idle, non-transmitting state, the slave select line is kept at a high voltage level.
Multiple CS/SS pins may be available on the master, which allows for multiple slaves to be wired in
parallel. If only one CS/SS pin is present, multiple slaves can be wired to the master by daisy-
chaining.
MULTIPLE SLAVES
SPI can be set up to operate with a single master and a single slave, and it can be set up with
multiple slaves controlled by a single master. There are two ways to connect multiple slaves to the
master. If the master has multiple slave select pins, the slaves can be wired in parallel like this:

If only one slave select pin is available, the slaves can be daisy-chained like this:

MOSI AND MISO
The master sends data to the slave bit by bit, in serial through the MOSI line. The slave receives the
data sent from the master at the MOSI pin. Data sent from the master to the slave is usually sent
with the most significant bit first. The slave can also send data back to the master through the
MISO line in serial. The data sent from the slave back to the master is usually sent with the least
significant bit first.
STEPS OF SPI DATA TRANSMISSION
1. The master outputs the clock signal:

PCE, Jaipur Embedded System P a g e | 8

DATA WORKING

2. The master switches the SS/CS pin to a low voltage state, which activates the slave:

3. The master sends the data one bit at a time to the slave along the MOSI line. The slave reads the
bits as they are received:

4. If a response is needed, the slave returns data one bit at a time to the master along the MISO
line. The master reads the bits as they are received:

SPI works in a slightly different manner. It's a "synchronous" data bus, which means that it uses
separate lines for data and a "clock" that keeps both sides in perfect sync. The clock is an oscillating
signal that tells the receiver exactly when to sample the bits on the data line. This could be the
rising (low to high) or falling (high to low) edge of the clock signal; the datasheet will specify which
one to use. When the receiver detects that edge, it will immediately look at the data line to read
the next bit (see the arrows in the below diagram). Because the clock is sent along with the data,
specifying the speed isn't important, although devices will have a top speed at which they can
operate (We'll discuss choosing the proper clock edge and speed in a bit).

PCE, Jaipur Embedded System P a g e | 9

One reason that SPI is so popular is that the receiving hardware can be a simple shift register. This
is a much simpler (and cheaper!) piece of hardware than the full-up UART (Universal Asynchronous
Receiver / Transmitter) that asynchronous serial requires.

Receiving Data
You might be thinking to yourself, self, that sounds great for one-way communications, but how do
you send data back in the opposite direction? Here's where things get slightly more complicated. In
SPI, only one side generates the clock signal (usually called CLK or SCK for Serial ClocK). The side
that generates the clock is called the "master", and the other side is called the "slave". There is
always only one master (which is almost always your microcontroller), but there can be multiple
slaves (more on this in a bit). When data is sent from the master to a slave, it's sent on a data line
called MOSI, for "Master Out / Slave In". If the slave needs to send a response back to the master,
the master will continue to generate a prearranged number of clock cycles, and the slave will put
the data onto a third data line called MISO, for "Master In / Slave Out".

Notice we said "prearranged" in the above description. Because the master always generates the
clock signal, it must know in advance when a slave needs to return data and how much data will be
returned. This is very different than asynchronous serial, where random amounts of data can be
sent in either direction at any time. In practice this isn't a problem, as SPI is generally used to talk to
sensors that have a very specific command structure. For example, if you send the command for
"read data" to a device, you know that the device will always send you, for example, two bytes in
return. (In cases where you might want to return a variable amount of data, you could always
return one or two bytes specifying the length of the data and then have the master retrieve the full
amount.)

Note that SPI is "full duplex" (has separate send and receive lines), and, thus, in certain situations,
you can transmit and receive data at the same time (for example, requesting a new sensor reading
while retrieving the data from the previous one). Your device's datasheet will tell you if this is
possible.

Slave Select (SS)
There's one last line you should be aware of, called SS for Slave Select. This tells the slave that it
should wake up and receive / send data and is also used when multiple slaves are present to select
the one you'd like to talk to.

https://www.sparkfun.com/products/733

PCE, Jaipur Embedded System P a g e | 10

The SS line is normally held high, which disconnects the slave from the SPI bus. (This type of logic is
known as “active low,” and you’ll often see used it for enable and reset lines.) Just before data is
sent to the slave, the line is brought low, which activates the slave. When you're done using the
slave, the line is made high again. In a shift register, this corresponds to the "latch" input, which
transfers the received data to the output lines.

We can easily understand the working from the above animation. Master will generate clock
whenever it wants to write data to a Slave device. After 8 clock pulses data in the master device
(A7 ~ A0) is transferred to slave device and data in the slave device (B7 ~ B0) is transferred to the
master device.

Buffer

https://www.sparkfun.com/products/733

PCE, Jaipur Embedded System P a g e | 11

For the sake of explanation, I omitted Buffer Register. It acts as an interface between user
(processor, programmer) and SPI. Usually shift register won’t be directly accessible. So if we need
to transmit data, we will write it to the buffer register. So it will automatically written to shift
register when it is free and transmission will start. Similarly data is received in the shift register is
automatically transferred to buffer register once the reception is complete. We can easily read
from it. Thus buffer register will avoid all glitches that can happen if we try to read or write to shift
register directly while transmission is taking place.

SPI Modes – Clock Polarity & Phase

We already seen that clock for data transfer is generated by the SPI master. So the master should
set the clock frequency for SPI transfer. In addition to this clock polarity and clock phase are there,
which has to match with SPI slaves for proper data transfer.

Clock Polarity : CPOL or CKP
Clock polarity is the idle / active state of the clock. If idle state is 0, active state will be 1 and vice
versa.

Clock Phase : CPHA, Inverted Clock Phase (Clock Edge) : NCPHA or CKE
Clock phase or clock edge defines when to transfer data. Data can be transferred during LOW (0) to
HIGH (1) or HIGH to LOW transitions.

 Clock Polarity (CKP) = 0

This means that the base value of clock is zero. Which implies idle state is 0 and active state is 1.

o Clock Edge (CKE) = 0

Data transmission occurs during idle to active clock state, ie LOW to HIGH transition.

o Clock Edge (CKE) = 1

Data transmission occurs during active to idle clock state, ie HIGH to LOW transition

 Clock Polarity (CKP) = 1

This means that the base value of clock is one. Which implies idle state is 1 and active state is 0.

o Clock Edge (CKE) = 0

Data transmission occurs during idle to active clock state, ie HIGH to LOW transition.

o Clock Edge (CKE) = 1

Data transmission occurs during active to idle clock state, ie LOW to HIGH transition.

PCE, Jaipur Embedded System P a g e | 12

SPI PROGRAMMING

Configurations

Independent Slave Configuration

In the independent slave configuration, there is an independent slave select line from master to
each slave. SPI is commonly used in this way. SPI slave output (SDOx or MISO) will be a tri-state pin,
so it will be in high impedance state when the slave is not selected. In this configuration master can
select any slave device and start communication as per requirements.

Daisy Chain Configuration

In this configuration SPI can be connected one after another in a serial form. In this configuration a
single slave select line is used to select all daisy chain slaves. Whole chain acts like a communication
through shift registers connected in series. Each daisy chain slave is supposed to send out exact
copy of data received in the first group of clock cycles during the second group of clock cycles.

This configuration is commonly used in JTAG.

Many microcontrollers have built-in SPI peripherals that handle all the details of sending and
receiving data, and can do so at very high speeds. The SPI protocol is also simple enough that you
(yes, you!) can write your own routines to manipulate the I/O lines in the proper sequence to
transfer data. If you're using an Arduino, there are two ways you can communicate with SPI
devices:

1. You can use the shiftIn() and shiftOut() commands. These are software-based commands that
will work on any group of pins, but will be somewhat slow.

2. Or you can use the SPI Library, which takes advantage of the SPI hardware built into the
microcontroller. This is vastly faster than the above commands, but it will only work on certain
pins.

3. You will need to select some options when setting up your interface. These options must
match those of the device you're talking to; check the device's datasheet to see what it
requires.

http://arduino.cc/en/Reference/ShiftIn
http://arduino.cc/en/Reference/ShiftOut
http://arduino.cc/en/Reference/SPI

PCE, Jaipur Embedded System P a g e | 13

4. The interface can send data with the most-significant bit (MSB) first, or least-significant bit
(LSB) first. In the Arduino SPI library, this is controlled by the setBitOrder() function.

5. The slave will read the data on either the rising edge or the falling edge of the clock pulse.
Additionally, the clock can be considered "idle" when it is high or low. In the Arduino SPI
library, both of these options are controlled by the setDataMode() function.

6. SPI can operate at extremely high speeds (millions of bytes per second), which may be too fast
for some devices. To accommodate such devices, you can adjust the data rate. In the Arduino
SPI library, the speed is set by the setClockDivider() function, which divides the master clock
(16MHz on most Arduinos) down to a frequency between 8MHz (/2) and 125kHz (/128).

7. If you're using the SPI Library, you must use the provided SCK, MOSI and MISO pins, as the
hardware is hardwired to those pins. There is also a dedicated SS pin that you can use (which
must, at least, be set to an output in order for the SPI hardware to function), but note that you
can use any other available output pin(s) for SS to your slave device(s) as well.

8. On older Arduinos, you'll need to control the SS pin(s) yourself, making one of them low before
your data transfer and high afterward. Newer Arduinos such as the Due can control each SS pin
automatically as part of the data transfer; see the Due SPI documentation page for more
information.

ADVANTAGES AND DISADVANTAGES OF SPI

There are some advantages and disadvantages to using SPI, and if given the choice between
different communication protocols, you should know when to use SPI according to the
requirements of your project:

ADVANTAGES

 No start and stop bits, so the data can be streamed continuously without interruption

 No complicated slave addressing system like I2C

 Higher data transfer rate than I2C (almost twice as fast)

 Separate MISO and MOSI lines, so data can be sent and received at the same time

 Simple hardware

 Full duplex communication

 Simple software implementation

 High Speed

 No speed limit (practically it will be limited by the clock frequency, rise time, fall time etc.)

 Not Limited to 8 bit data

 Signals are unidirectional through all lines, makes easy isolation

 No need of unique address in slaves like in RS485 or I2C.

 No need of precision oscillators in slave devices as it uses master’s clock

 No complex transceivers are required

DISADVANTAGES

 Uses four wires (I2C and UARTs use two)

 No acknowledgement that the data has been successfully received (I2C has this)

E x p
 e r i m

 e n
 t N

 o
 : 1

0

http://arduino.cc/en/Reference/SPISetBitOrder
http://arduino.cc/en/Reference/SPISetDataMode
http://arduino.cc/en/Reference/SPISetClockDivider
http://arduino.cc/en/Reference/DueExtendedSPI

PCE, Jaipur Embedded System P a g e | 14

CONCLUSION

VIVA QUESTIONS

 No form of error checking like the parity bit in UART

 Only allows for a single master

 More pins/wires are required. Minimum 3 wires (in single slave) are required.

 Can be used only from short distances

 No error detection protocol is defined

 Usually supports only one master

Applications

 SD Cards

 LCD Displays

 RTC

 Ethernet Controllers

Successfully Study the program for Master Slave Communication between using suitable hardware

and using SPI

1. Can you explain the concept of Master-

Slave communication in the context of

SPI (Serial Peripheral Interface)?

2. What are the key components required

for implementing Master-Slave

communication using SPI?

3. How does SPI differ from other

communication protocols like I2C or

UART?

4. What are the advantages of using SPI for

Master-Slave communication?

5. Describe the hardware setup required for

establishing Master-Slave

E x p
 e r i m

 e
 n

 t N
 o

 : 4

https://electrosome.com/lcd-display-fundamentals/

PCE, Jaipur Embedded System P a g e | 15

communication using SPI.

6. What role does the Master device play in

SPI communication, and how does it

differ from the Slave device?

7. How is data transferred between the

Master and Slave devices in SPI

communication?

8. What are the different modes of SPI

communication, and how do they affect

data transfer?

9. Can you explain the significance of

clock polarity and phase in SPI

communication?

10. How is data synchronization ensured

between the Master and Slave devices in

SPI communication?

11. What considerations should be taken into

account while selecting suitable

hardware for implementing SPI

communication?

12. Discuss the potential challenges or

limitations associated with SPI

communication in a Master-Slave setup.

13. How does the choice of microcontroller

or microprocessor impact the

implementation of SPI communication?

PCE, Jaipur Embedded System P a g e | 16

14. Can you explain any alternative methods

or protocols that can be used for Master-

Slave communication besides SPI?

15. What are some practical applications or

use cases where Master-Slave

communication using SPI is commonly

employed?

Experiment No: 11

Write a program for variable frequency

square wave generation using with

suitable hardware.

DEPARTMENT OF ELECTRICAL ENGINEERING

Embedded System

Lab

PCE, Jaipur Embedded System P a g e | 1

TITLE: Write a program for variable frequency square
wave generation using with suitable hardware

APPRATUS

THEORY

Write a program for variable frequency square wave generation using with suitable hardware.

1) Ardunio kit

2) DSO

3) Variable Resistor (10K)

4) Resistor

5) Switch

6) Kit power supply or Dual power supply with +/- 12volt/ 200mA.

7) Proteus Software

8) Connecting code and DSO Probe

A) Generating a square wave:

A square wave with frequency f = 1 kHz (kilohertz) is shown in the Figure below. This is a periodic
signal with period T = 1/f = 1/1000 = 1 millisecond. The amplitude of the signal is 5 V (volts). This
signal can be generated by making a bit “1” when “high” voltage is required and “0” when “low”
voltage is required. If one is added repeatedly to a binary number, the least significant bit
(LSB) of the result will alternate between 0 and 1. We use this technique of continually
incrementing a number to generate a square wave.

The problem then becomes: write a program that will the LSB of an accumulator and send
the result to one of the output lines of the EVB. As can be seen in the Table, the EVB has output
ports A-E. They are accessed through connector P1. Connector P1 includes the lines of five ports,
namely Port A, B, C, D, and E, and other signals like E-clock, interrupt request (IRQ), VDD, etc.
Except for Port D, each port has eight pins. Note that Port B is the only port that generates only
output lines. Hence, we will use Port B in this lab. We will generate a square wave with a program
and send the signal to the Port B.

The address for Port B is $1004. This location does not belong to the user programmable space in
the RAM (you can see this on the EVB memory map). Any data that is stored at this location will
appear at the eight pins of Port B. The instruction STAA $1004 will store the value in Accumulator A
into $1004 and thus the eight bits in Accumulator A appear at Port B.

AIM

E x p
 e r i m

 e n
 t N

 o
 : 1

1

PCE, Jaipur Embedded System P a g e | 2

The frequency of the square wave can be measured by connecting the appropriate pins to the
oscilloscope. The pin assignment of the 60-pin connector P1 is shown in Table 6-1 of the EVB
User’s Manual.

We start by writing a program that can do these manipulations. We will use Accumulator A to
increment the value we send to output Port B. We first have to clear Accumulator A, then
continuously increment it and write the result to address $1004. Program 1 (below) performs this
task. Note that the BRA instruction always branches back, so this program has an infinite (never
ending) loop. We can connect an oscilloscope to the appropriate pin on connector Pl to see the
generated square wave, and can calculate the frequency of this signal. All of the square waves will
be observed on bit 0 of Port B (abbreviated “PB0”). You may want to look at the signals generated
on the other bits of Port B, too.

Figure 1: Square wave of l kHz frequency

How can we calculate the frequency of the square wave? The M68HC11 operates with a clock of
frequency 2 MHz (megahertz), i.e. 2 million cycles per second. Hence each cycle has a period of
1 second/(2 × 106 cycles) = 0.5 μsec/cycle. Therefore, if an instruction takes 4 cycles, it takes 4 ×
0.5 = 2 μsec to execute. The number of cycles each instruction takes can be found in the Instruction
Set Summary (Appendix A in the textbook). From these tables, we see that CLRA takes 2 cycles,
INCA takes 2 cycles, STAA with extended addressing takes 4 cycles, and BRA takes 3 cycles. Hence

PCE, Jaipur Embedded System P a g e | 3

the total number of cycles involved in each loop are 2+4+3 = 9 cycles. Note that the loop consists of
only INCA, STAA, and BRA instructions. CLRA and SWI are outside the loop. The total time

involved in executing 9 cycles is 9 × 0.5 μsec/cycle = 4.5 μsec. Our output square wave goes from
“up” to “down”, or from “down” to “up”, every 4.5 μsec. This makes the period T = 2 × 4.5 μsec =
9.0 μsec and the corresponding frequency f = 1/(9.0 μsec) = 0.1111 MHz.

B) Generating a square wave of desired frequency:

In the previous section we generated a square wave. This section deals with generating a square
wave of a desired frequency. We showed the calculations required for computing the total number
of clock cycles in a given loop. To generate a square wave of lower frequency (< 0.1111 MHz), we
need to introduce a “wait loop”, i.e., a sequence of instructions that takes some time to execute
but does nothing. The following assembly program shows one such wait loop.

This wait loop does nothing, but it spends some time executing. Inserting such a loop in Program l,
we can increase the execution time and hence can increase the period of the generated square
wave. Program 2 shows Program 1 modified with a wait loop.

Note that an unknown number N is used in Program 2. For a given frequency we wish to generate,

we must compute the value of N. We compute the execution time involved in executing LOOP by

analyzing the loop WAIT, and the rest of the instructions in loop LOOP with cycle-by-cycle

calculations:

WAIT loop timing:

- N = Total number of times the loop WAIT is executed
- DEX takes 3 cycles.

- BNE takes 3 cycles.

- Total cycles in WAIT loop = 6N.

PCE, Jaipur Embedded System P a g e | 4

BLOCK DIAGRAM

LOOP loop timing:

- INCA takes 2 cycles.
- LDX takes 3 cycles in immediate addressing mode.

- STAA takes 4 cycles in extended addressing mode.

- BRA takes 3 cycles.

- Total cycles in LOOP loop = 2 + 3 + 6N + 4 + 3 = 6N + 12 cycles

Square wave characteristics:

Period of square wave: T = 2 × (6N + 12) cycles × 0.5 μsec/cycle = 6N + 12 μsec

A desired frequency of f MHz implies: N = (1/f - 12) / 6

The number N calculated from this formula for a desired frequency, fdesired , should be substituted

for N in Program 2. Care should be taken since the resulting N is a real number, not an integer. The

integer value closest to the calculated real number should be chosen. The resulting frequency will

not always equal the desired frequency, fdesired . For example, fdesired = 25 kHz results in N =

4.67; we choose the closest integer, N = 5. The calculated frequency is fcalc = 23.8 kHz.

A solution to this problem is to introduce more instructions to change the loop timing. A good

choice is the NOP instruction (no operation). This instruction does nothing but use two CPU cycles

(it doesn't change any registers, affect the CCR, etc.). Since it doesn't affect the CPU, it is a good

choice to use in wait loops. If additional instructions are introduced, all the cycle-by-cycle

calculations must be redone since the above formula for N is no longer valid.

PCE, Jaipur Embedded System P a g e | 5

PROGRAM & OUTPUT

.

a)

Sine wave:

 When a1=1 sine wave is selected. We get value of potentiometer in range of 0 to 1, so convert it

from 0 to 100 multiply it by 100.

 Put this value of 'A' in sine function to get different frequencies.

while(a1==1) //For generating sine wave

 {

 A=Ain*100;

for (n=0;n<A;n++)

 {

 Aout= 0.5 + 0.5*sin(n*2*pi/A); //note the 0.5 V of offset since DAC
outputs voltage between 0 and 3.3V

 }

 }

Square wave:

 When a2 is '1' square wave is selected. To get different delay Ain is divided by 10 so we get delay in

range of 0 to 0.1 Sec.

E x p
 e r i m

 e
 n

 t N
 o

 : 4

PCE, Jaipur Embedded System P a g e | 6

while(a2==1)
{

//for generating square wave

Aout=0X00;
wait(Ain/10);

Aout=0XFF;
wait(Ain/10);

}

Triangular wave:

 We get value of potentiometer in range of 0 to 1, so convert it from 0 to 100 multiply Ain by 100

and get A.

 Divide i by A so that we get Aout in range of 0 to 1.

while(a3==1) //for generating trianguler wave

{

A=Ain*100.00;

for (i = 0.00; i < A; i++)

{

Aout = (float)i /A;

 wait(0.0001);

 }

for (i = A-1.00; i > 0.00; i--)

 {

 Aout = (float)i / A;

 wait(0.0001);

 }

 }

PCE, Jaipur Embedded System P a g e | 7

CONCLUSION

QUESTION

Saw-tooth wave:

 Divide i by (Ain*100) to get Aout in range of 0 to 1.

while(a4==1) //for generating saw-tooth wave

 {

for (i = 0.00; i < (Ain*100); i++)

 {

 Aout = (float)i / (Ain*100);

 }

 }

Successfully design the circuit of variable frequency square wave generation in Proteus software and
implement on hardware at microcontroller kit.

a. Can you describe the objective of the experiment on variable

frequency square wave generation?

b. What hardware components are required for this experiment?

c. How does the square wave generator circuit work?

d. What is the significance of generating square waves with variable

frequency?

e. How do you control the frequency of the square wave in your

program?

f. What programming language did you use for writing the program, and

why?

g. Can you explain the role of timers or counters in the program?

h. How did you ensure the accuracy and stability of the generated square

wave frequencies?

i. What methods did you employ for testing the functionality of your

program?

j. How does the hardware interface with the program for frequency

E x p
 e r i m

 e
 n

 t N
 o

 : 4

PCE, Jaipur Embedded System P a g e | 8

control?

k. What challenges did you encounter during the implementation of the

program and how did you overcome them?

l. Can you discuss any limitations or constraints of your hardware setup

for this experiment?

m. How did you verify that the generated square wave frequencies meet

the desired specifications?

n. Did you encounter any issues with signal integrity or noise during the

generation process? If so, how did you address them?

o. How would you further enhance or optimize the program or hardware

setup for better performance or versatility in future experiments?

Experiment No : 12

Write a program to implement a PWM

based speed controller for 12 V/24V

DC Motor incorporating a suitable

potentiometer to provide the set

point.

DEPARTMENT OF ELECTRICAL ENGINEERING

EMBEDDED SYSTEM LAB MANUAL

DC Motor Control using microcontroller

PCE, Jaipur Embedded System Laboratory P a g e | 1

APPARATUS

THEORY

PROCEDURE

To study interfacing of DC motor control with microcontroller.

1) DC Motor control card.

2) 8051 board.

3) FRC Connector.

4) Dual power supply.

DC motor control card gives the complete control of motor i.e. direction and speed control.

DC motor module consists of two controls speed and direction. A DAC 0808 is used to

control the speed of motor. This converts the digital data equivalent to speed into analog

value as a reference of speed. Speed is controlled by PWM IC LM 3524 direction control

uses port C (PC1) of 8255.

DC motor control using PWM:-

Pulse width modulation is a different way of controlling the speed of DC motor. The duty

cycle controls the armature voltage & hence the motor speed. The total period of a PWM

waveform is kept such that mechanical inertia will smooth out the power brush. PWM

waveforms can easily be generated using microcontroller. The driver amplifier circuit can

be a power transistor, MOSFET or power operational amplifier. IC LM 35Q4 accepts

logical signals (OV & 5V) from a microcontroller. Motor supply voltage can be minimum

50V & maximum load current of 2A output pins of LM3524 are converted to DC motor

armature directly. IC switches supply voltage & ground to the pins.

Changing the phase signal reverses the direction of motor. For logic 1 phase signal, the motor

direction is clockwise & for a low phase signal, it will be counter clock wise. Enable input is

connected to PWM output of the microcontroller. The microcontroller pin may directly drive

the MOSFET IRF 130. The pin (1) shows a PWM drive for DC motor using microcontroller.

Power MOSFET is used as a switching device. 12 V supply is used to drive the MOSFET

gate. If 12V supply is not available then it may be derived using simple zener diode circuit

from DC supply used for load.

1) The DC motor control card supplied to you comes in the from of well finished wooden box.

2) Keep development board to the RHS & DC motor control card to LHS.
3) Connect +5v supply to kit.

AIM

TITLE : DC Motor control

E x p
 e

 r i m
 e

 n
 t N

 o
 : 12

DC Motor Control using microcontroller

PCE, Jaipur Embedded System Laboratory P a g e | 2

PROGRAM

4) Connect the ports of the microcontroller (Available on 26 pin FRC connector) to the DC
motor control card with the help of 26 pin FRC.

5) Switch ON the power supply.
6) Feed or down load the sample program given. As per following the instruction & execute the

program.

7) Press ‘I’ key on your LGS 51 kit key board for increase the speed of motor.
8) Press ‘D’ key on your LGS 51 kit key board for decrease the speed ofmotor.
9) Press ‘C’ key on your LGS 51 kit key board for rotate the motor in clockwise/ forward

direction.
10) Press ‘A’ key on your LGS 51 kit key board for rotate the motor in anticlockwise/ reverse

direction.

Memory

address

Opcode Label Mnemonic Comment

8000 75 81 60 MOV SP,# 60H

8003 79 00 MOV R1,# 00H

8005 90 80 C4 MOV DPTR, # LINE 2

8008 12 00 5A LCALL MSGOUT

800B 79 04 MOV R1, # 04H

800D 90 80 CD MOV DPTR, #F2

8010 12 00 5A LCALL MSGOUT

8013 79 08 MOV R1, # 08H

8015 90 80 D1 MOV DPTR, #F3

8018 12 00 5A LCALL MSGOUT

801B 79 0C MOV R1, # OCH

801D 90 80 E0 MOV DPTR, #F6

8020 12 00 5A LCALL MSGOUT

8023 74 80 MOV A,# 80H

8025 90 00 03 MOV DPTR, # CW55

8028 F0 MOVX @ DPTR, A

8029 FA MOV R2, A

E x p
 e

 r i m
 e

 n
 t N

 o
 : 12

DC Motor Control using microcontroller

PCE, Jaipur Embedded System Laboratory P a g e | 3

802A 74 1F MOV A,# 1FH

802C 90 00 00 MOV DPTR, # PORTA

802F F0 MOVX @ DPTR, A

8030 FA MOV R2, A

8031 74 00 MOV A, # 00H

8033 90 00 01 MOV DPTR, # PORTB

8036 F0 MOVX @DPTR, A

8037 12 00 65 LOOP : LCALL RDKEY

803A 79 04 MOV R1, # 04H

803C B4 41 1B CJNE A, # ‘A’, CHKC

803F 90 80 C9 MOV DPTR, # F1

8042 12 00 5A LCALL MSGOUT

8045 74 80 MOV A, # 80H

8047 90 00 03 MOV DPTR, # CW55

804A F0 MOVX @DPTR, A

804B 74 00 MOV A, # 00H

804D 90 00 01 MOV DPTR, # PORTC

8050 F0 MOVX @DPTR, A

8051 EA MOV A, R2

8052 90 00 00 MOV DPTR, # PORTA

8055 F0 MOVX @DPTR, A

8056 FA MOV R2, A

8057 02 80 37 LJMP LOOP

805A B4 43 1B CHKC : CJNE A, # ‘C’, CHKD

805D 90 80 CD MOV DPTR, # F2

8060 12 00 5A LCALL MSGOUT

8063 74 80 MOV A, # 80H

E x p
 e

 r i m
 e

 n
 t N

 o
 : 12

DC Motor Control using microcontroller

PCE, Jaipur Embedded System Laboratory P a g e | 4

8065 90 00 03 MOV DPTR, # CW55

8068 F0 MOVX @DPTR, A

8069 74 01 MOV A, # 02H

806B 90 00 01 MOV DPTR, # PORTC

806E F0 MOVX @DPTR, A

806F EA MOV A, R2

8070 90 00 00 MOV DPTR, # PORTA

8073 F0 MOVX @DPTR, A

8074 FA MOV R2, A

8075 02 80 37 LJMP LOOP

8078 79 0C CHKD : MOV R1, # 0CH

807A B4 44 15 CJNE A, # ‘D’, CHKI

807D 90 80 DB MOV DPTR, # F5

8080 12 00 5A LCALL MSGOUT

8083 90 00 00 MOV DPTR, # PORTA

8086 BA 18 03 CJNE R2, # 18H, NODEC

8089 02 80 8D LJMP NODEC1

808C 1A NODEC : DEC R2

808D EA NODEC 1 : MOV A, R2

808E F0 MOVX @DPTR, A

808F 02 80 37 LJMP LOOP

8092 B4 49 15 CHKI : CJNE A, # ‘I’, CHESC

8095 90 80 D6 MOV DPTR, # F4

8098 12 00 5A LCALL MSGOUT

809B 90 00 00 MOV DPTR, # PORTA

809E BA FF 03 CJNE R2, # 0OFFH, NOINC

80A1 02 80 A5 LJMP NOINC1

E x p
 e

 r i m
 e

 n
 t N

 o
 : 12

DC Motor Control using microcontroller

PCE, Jaipur Embedded System Laboratory P a g e | 5

80A4 0A NOINC: INC R2

80A5 EA NOINC 1 : MOV A, R2

80A6 F0 MOVX @DPTR, A

80A7 02 80 37 LJMP LOOP

80AA B4 20 8A CHESC : CJNE A, # 20H, LOOP

80AD 74 80 MOV A, # 80H

80AF 90 00 03 MOV DPTR, # CW55

80B2 F0 MOVX @DPTR, A

80B3 74 00 MOV A, # 00H

80B5 90 00 00 MOV DPTR, # PORTA

80B8 F0 MOVX @DPTR, A

80B9 01 37 AJMP LOOP

80BB 44 43 20 4D LINE 1 : DB DC MOTOT, 03H

80BF 4F 54 4F 52

80C3 03

80C4 44 49 52 3A LINE 2 : DB DIR : , 03H

80C8 03

80C9 52 45 56 03 F1 : DB REV, 03H

80CD 46 57 44 03 F2 : DB FWD, 03H

80D1 53 50 44 3A F3 : DB SPD, 03H

80D5 03

80D6 49 4E 43 20 F4 : DB INC, 03H

80DA 03

80DB 44 45 43 20 F5 : DB DEC, 03H

80DF 03

80E0 4E 4F 52 4D F6 : DB NORM, 03H

80E4 03

E x p
 e

 r i m
 e

 n
 t N

 o
 : 12

DC Motor Control using microcontroller

PCE, Jaipur Embedded System Laboratory P a g e | 6

CONCLUSION

Simple program for understanding:

ORG 00H // initial starting address

MAIN: MOV P1,#00000001B // motor runs clockwise

ACALL DELAY // calls the 1S DELAY

MOV P1,#00000010B // motor runs anti clockwise

ACALL DELAY // calls the 1S DELAY

SJMP MAIN // jumps to label MAIN for repeating the cycle

DELAY: MOV R4,#0FH

WAIT1: MOV R3,#00H

WAIT2: MOV R2,#00H

WAIT3: DJNZ R2,WAIT3

DJNZ R3,WAIT2

DJNZ R4,WAIT1

RET

Thus we have studied interfacing of DC motor where it moves in clockwise and anticlockwise direction.

VIVA QUESTIONS:

1. Can you explain what PWM stands for and how it is utilized in motor speed control?

2. How does a PWM-based speed controller differ from other methods of motor speed control?

3. What are the advantages of using a PWM-based controller for motor speed regulation?

4. Can you outline the basic components required for implementing a PWM-based speed controller for

a DC motor?

5. How does a potentiometer integrate into the PWM-based speed control system, and what is its role?

6. What factors should be considered when selecting a suitable potentiometer for this application?

7. Can you describe the process of setting the desired speed using the potentiometer in this setup?

8. What are the safety precautions to be taken when working with high voltage DC motors?

9. How does the voltage level (12V/24V) affect the design and implementation of the PWM-based

speed controller?

10. What is duty cycle in the context of PWM, and how does it influence motor speed?

11. How does the frequency of the PWM signal affect the performance of the motor controller?

12. Can you explain how feedback mechanisms can be incorporated into this PWM-based speed control

system for improved accuracy?

13. What are the potential challenges or limitations one might encounter when implementing this

PWM-based speed controller?

14. How would you calibrate the system to ensure accurate speed control?

15. Can you discuss any potential applications or industries where PWM-based motor speed control is

commonly used, and why?

E x p
 e

 r i m
 e

 n
 t N

 o
 : 12

