

ISI-6, RIICO Institutional Area, Sitapura, Jaipur-302022, Rajasthan

Phone/Fax: 0141-2770790-92, www.pce.poornima.org

Data Structure & Algorithm Lab Manual

(Lab Code: 3CS4-21)

3thSemester, 2nd Year

Department of Computer Engineering

Session: 2022-23

http://www.pce.poornima.org/

ii

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

DSA Lab (3CS4-21) Manual Department of Computer Engineering

TABLE OF CONTENT

S. No. Topic/Name of Experiment Page

Number

GENERALDETAILS

1 Vision & Mission of Institute and Department iii

2 RTU Syllabus and Marking Scheme iv

3 Lab Outcomes and its Mapping with Pos and PSOs v-vii

4 Rubrics of Lab viii-ix

5 Lab Conduction Plan x

6 Lab Rotor Plan xi

7 General Lab Instructions xii-xiii

8 Lab Specific Safety Rules xiii

LIST OF EXPERIMENTS (AS PER RTU SYLLABUS)

1 Zero Lab 1-2

2 Introduction: Objective, scope and outcome of the course. 3

3 Write a simple C program on a 32 bit compiler to understand the concept of array

storage, size of a word. The program shall be written illustrating the concept of row

major and column major storage. Find the address of element and verify it with the

theoretical value. Program may be written for arrays upto 4-dimensions.

4

4 Simulate a stack, queue, circular queue and dequeue using a one dimensional array

as storage element. The program should implement the basic addition, deletion and

traversal operations.

5-18

5 Represent a 2-variable polynomial using array. Use this representation to

implement addition of polynomials.

19-24

6 Represent a sparse matrix using array. Implement addition and transposition

operations using the representation.

25-27

7 Implement singly, doubly and circularly connected linked lists illustrating

operations like addition at different locations, deletion from specified locations and

traversal.

28-43

8 Repeat exercises 2, 3 & 4 with linked structures. 44-50

9 Implementation of binary tree with operations like addition, deletion, traversal. 51-56

10 Depth first and breadth first traversal of graphs represented using adjacency matrix

and list.

56-63

11 Implementation of binary search in arrays and on linked Binary Search Tree. 64-65

iii

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

DSA Lab (3CS4-21) Manual Department of Computer Engineering

12 Implementation of different sorting algorithm like insertion, quick, heap, bubble

and many more sorting algorithms.

66-71

13 Beyond the Syllabus Exp -1 72-74

14 Beyond the Syllabus Exp -2 75-76

iv

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

DSA Lab (3CS4-21) Manual Department of Computer Engineering

INSTITUTE VISION&MISSION

VISION

To create knowledge-based society with scientific temper, team spirit and dignity of labor to face the

global competitive challenges.

MISSION

To evolve and develop skill-based systems for effective delivery of knowledge so as to equip young

professionals with dedication & commitment to excellence in all spheres of life.

DEPARTMENTVISION &MISSION

VISION

Evolve as a center of excellence with wider recognition and to adapt the rapid innovation in Computer

Engineering.

MISSION

 To provide a learning-centered environment that will enable students and faculty members to

achieve their goals empowering them to compete globally for the most desirable careers in

academia and industry.

 To contribute significantly to the research and the discovery of new arenas of knowledge and

methods in the rapid developing field of Computer Engineering.

 To support society through participation and transfer of advanced technology from one sector

to another.

v

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

DSA Lab (3CS4-21) Manual Department of Computer Engineering

RTU SYLLABUS AND MARKIN SCHEME

3CS4-21: Data Structure & Algorithm Lab

Credit:1 Max.Marks:100(IA:60,ETE:40)

0L+0T+3P EndTermExam:2Hours

S. No. NAME OF EXPERIMENTS

1 Introduction: Objective, scope and outcome of the course.

2 Write a simple C program on a 32 bit compiler to understand the concept of array storage,

size of a word. The program shall be written illustrating the concept of row major and

column major storage. Find the address of element and verify it with the theoretical value.

Program may be written for arrays upto 4-dimensions.

3 Simulate a stack, queue, circular queue and dequeue using a one dimensional array as

storage element. The program should implement the basic addition, deletion and traversal

operations.

4 Represent a 2-variable polynomial using array. Use this representation to implement

addition of polynomials.

5 Represent a sparse matrix using array. Implement addition and transposition operations

using the representation.

6 Implement singly, doubly and circularly connected linked lists illustrating operations like

addition at different locations, deletion from specified locations and traversal.

7 Repeat exercises 2, 3 & 4 with linked structures.

8 Implementation of binary tree with operations like addition, deletion, traversal.

9 Depth first and breadth first traversal of graphs represented using adjacency matrix and list.

10 Implementation of binary search in arrays and on linked Binary Search Tree.

11 Implementation of different sorting algorithm like insertion, quick, heap, bubble and many

more sorting algorithms.

EVALUATIONSCHEME

I+II Mid Term Examination Attendance and performance End Term Examination
Total Marks

Experiment Viva Total Attendance Performance Total Experiment Viva Total

40 20 60 20 40 60 30 10 40 100

DISTRIBUTIONOFMARKSFOREACHEXPERIMENT

Attendance Record Performance Total

2 3 5 10

vi

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

DSA Lab (3CS4-21) Manual Department of Computer Engineering

LAB OUTCOME AND ITS MAPPING WITH PO& PSO

LAB OUTCOMES

After completion of this course, students will be able to–

3CS4-21.1 To Utilize searching and sorting algorithms on given values.

3CS4-21.2 To analyze the time and space efficiency of the data structure.

3CS4-21.3 To Evaluate traversing, insertion and deletion operations on Linear and non-

linear data structures.

3CS4-21.4 To construct the solutions for real time applications.

LO-PO-PSOMAPPINGMATRIXOFCOURSE

LO/PO/PS

O

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

P
S

O
1

P
S

O
2

P
S

O
3

3CS4-21.1 2 - - - 2 - - - - 2 - - 2 - -

3CS4-21.2 - - - - - 2 - - - - - - 2 - -

3CS4-21.3 - - - - - - 2 - - - - 2 - 2 -

3CS4-21.4 - - - - 2 - - - 2 - - - - - 3

vii

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

DSA Lab (3CS4-21) Manual Department of Computer Engineering

PROGRAM OUTCOMES (POs)

PO1
Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals and an engineering specialization to the solution of complex engineering

problems.

PO2

Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

PO3

Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

PO4

Conduct investigations of complex problems: Use research-based knowledge and

research methods including design of experiments, analysis and interpretation of data, and

synthesis of the information to provide valid conclusions.

PO5

Modern tool usage: Create, select, and apply appropriate techniques, resources, and

modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.

PO6

The engineer and society: Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

PO7

Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and

need for sustainable development.

PO8
Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

PO9
Individual and teamwork: Function effectively as an individual, and as a member or

leader in diverse teams, and in multi-disciplinary settings.

PO10

Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give

and receive clear instructions.

PO11

Project management and finance: Demonstrate knowledge and understanding of the

vii

i

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

DSA Lab (3CS4-21) Manual Department of Computer Engineering

engineering and management principles and apply these to one’s own work, as a member

and leader in a team, to manage projects and in multidisciplinary environments.

PO12
Life-long learning: Recognize the need for and have the preparation and ability to engage

in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1
The ability to understand and apply knowledge of mathematics, system analysis &

design, Data Modelling, Cloud Technology, and latest tools to develop computer

based solutions in the areas of system software, Multimedia, Web Applications, Big

data analytics, IOT, Business Intelligence and Networking systems

PSO2 The ability to understand the evolutionary changes in computing, apply standards

and ethical practices in project development using latest tools & Technologies to

solve societal problems and meet the challenges of the future.

PSO3 The ability to employ modern computing tools and platforms to be an entrepreneur,

lifelong learning and higher studies

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

ix

RUBRICS FOR LAB

Laboratory Evaluation Rubrics:

S.

No.

Crit

eria

SubCriteriaandMarksDistribution
Outstanding(>90%)

Admirable(70-90%)

Average(40-69%)

Inadequate(<40%)

Mid-Term End-Team
Continues

Evaluation

A

P

E
R

F
O

R
M

A
N

C
E

(P
O

1
,P

O
8

,P
O

9
)

Procedure

Followed

M.M.50=3

M.M.75=4

M.M.100=6

Procedure

Followed

M.M.50=3

M.M.75=4

M.M.100=6

Procedure

Followed

M.M.50=1

M.M.75=2

M.M.100=2

 All possible system and

Input/Output variables are

taken intoaccount

 Performancemeasuresarep

roperlydefined

 Experimental scenarios

arevery welldefined

 Most of the system

andInput/ Output variables

aretaken intoaccount

 Most of the

Performancemeasures are

properlydefined

 Experimental

scenariosaredefined

correctly

 Some of the system and

Input/Output variables are taken

intoaccount

 Some of the

Performancemeasuresareprop

erlydefined

 Experimental scenarios

aredefinedbutnot sufficient

 System and Input/

Outputvariablesarenotdefi

ned

 Performance measures are

notproperly defined 

Experimentalscenariosnotdefine

d

Individual/Tea

mWork

M.M.50=3

M.M.75=4
M.M.100=6

Individual/Tea

mWork

M.M.50=3

M.M.75=4
M.M.100=6

Individual/Tea

mWork

M.M.50=1

M.M.75=2
M.M.100=2

 Coordinationamongthegroup

membersinperforming

theexperimentwas excellent

 Coordination among

thegroup members

inperforming the

experimentwasgood

 Coordinationamongthegroup

membersinperforming

theexperimentwas average

 Coordinationamongthegroup

membersinperforming

theexperimentwas verypoor

Precision

indatacollection

M.M.50=3

M.M.75=4
M.M.100=6

Precision

indatacollection

M.M.50=3

M.M.75=4
M.M.100=6

Precision

indatacollection

M.M.50=2

M.M.75=2
M.M.100=4

 Data collected is correct

insize and from the

experimentperformed

 Datacollectedisappropria

te in size and

butnotfromproper sources.

 Data collected is not

soappropriate in size and but

frompropersources.

 Datacollectedis

neitherappropriate in size and

norfrompropersources

B

L
A

B

R
E

C
O

R
D

/W
R

IT
T

E
N

W
O

R
K

(P
O

1
,

P
O

8
,P

O
1

0
)

NA

NA

Timing

ofEvaluation

ofExperimen

t

M.M.50=3

M.M.75=4
M.M.100=6

 On the Same Date

ofPerformance

 On the Next Turn

fromPerformance

 BeforeDead Line

 On theDead Line

DataAnalysis

M.M.50=3

M.M.75=5
M.M.100=6

DataAnalysis

M.M.50=3

M.M.75=5
M.M.100=6

DataAnalysis

M.M.50=2

M.M.75=3
M.M.100=4

 Data collected is

exhaustivelyanalyzed &

appropriate featuresareselected

 Datacollectedisanalyzed

& but appropriate

featuresarenot selected

 Data collected is not

analyzedproperly. Features

selected arenotappropriate

 Datacollectedis

notanalyzed & the

featuresarenot selected

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

x

Results

andDiscuss

ion

M.M.50=3
M.M.75=5

M.M.100=6

Results

andDiscuss

ion

M.M.50=3
M.M.75=5

M.M.100=6

Results

andDiscuss

ion

M.M.50=2
M.M.75=3

M.M.100=4

 All results are very

wellpresentedwithallvariab

les

 Well prepared

neatdiagrams/plots/ tables

for allperformancemeasured

 Discussed critically

behaviorof the system with

reference

toperformancemeasures

 Very well discussed pros

ncons ofoutcome

 All results presented

butnotallvariablesmention

ed

 Prepared diagrams

/plots/tables for all

performancemeasured

butnotsoneat

 Discussed behavior of

thesystem with reference

toperformance measures

butnotcritical

 Discussed pros n cons

ofoutcomeinbrief

 Partialresultsareincluded

 Prepared diagrams

/plots/tables partially for

theperformancemeasures

 Behavior of the system

withreference to

performancemeasures has been

superficiallypresented

 Discussed pros n cons

ofoutcomebutnotsorelevant

 Results are included but not

asperexperimental scenarios

 No proper diagrams

/plots/tablesareprepared

 Behavior of the system

withreference to

performancemeasureshasnotbee

npresented

 Did not discuss pros n cons

ofoutcome

C

V

IV
A

(P
O

1
,

P
O

1
0

)

Wayofpre

sentation

M.M.50=2.5

M.M.75=4
M.M.100=5

Wayofpre

sentation

M.M.50=2.5

M.M.75=4
M.M.100=5

Wayofpre

sentation

M.M.50=2

M.M.75=3
M.M.100=4

 Presentationwasverygood

 Presentationwasgood

 Presentationwassatisfactory

 Presentation waspoor

ConceptE

xplanation

M.M.50=2.5
M.M.75=4
M.M.100=5

ConceptE

xplanation

M.M.50=2.5
M.M.75=4
M.M.100=5

ConceptE

xplanation

M.M.50=2
M.M.75=3
M.M.100=4

 Conceptualexplanationwase

xcellent

 Conceptual

explanationwasgood

 Conceptualexplanationwass

omewhatgood

 Conceptualexplanationwas

Poor

D

A
T

T
E

N
D

A

N
C

E

NA

NA

Attendance

M.M.50=5

M.M.75=8

M.M.100 =10

 Presentmorethan90%oflabses

sions

 Present more than 75%

oflab sessions

 Presentmorethan60%oflabses

sions

 Presentinlessthan60%labses

sions

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

xi

DSA Lab (3CS4-21) Manual Department of Computer Engineering

LAB CONDUCTION PLAN

Total number of Experiments - 13

Total number of turns required - 13

Number of turns required for: -

Experiment Number Scheduled

Week

Experiment-1 Week-1

Experiment-2 Week-2

Experiment-3 Week-3

Experiment-4 Week-4

Experiment-5 Week-5

Experiment-6 Week-6

Experiment-7 Week-7

I Mid Term Week-8

Experiment-8 Week-9

Experiment-9 Week-10

Experiment-10 Week-11

Experiment-11 Week-12

Experiment-12 Week-13

 Experiment-13 Week-14

II Mid Term Week15

DISTRIBUTION OF LAB HOURS

S. No.

Activity
Distribution of Lab Hours

Time

(180minute)

Time

(120minute)

1 Attendance 5 5

2 Explanation of Experiment &

Logic

30 30

3 Performing the Experiment 60 30

4 File Checking 40 20

5 Viva/Quiz 30 20

6 Solving of Queries 15 15

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

xii

DSA Lab (3CS4-21) Manual Department of Computer Engineering

LAB ROTAR PLAN

 ROTOR-1

Ex. No. NAME OF EXPERIMENTS

1 Introduction: Objective, scope and outcome of the course.

2
Write a simple C program on a 32 bit compiler to understand the concept of array storage,

size of a word. The program shall be written illustrating the concept of row major and

column major storage. Find the address of element and verify it with the theoretical value.

Program may be written for arrays upto 4-dimensions.

3 Simulate a stack, queue, circular queue and dequeue using a one dimensional array as

storage element. The program should implement the basic addition, deletion and traversal

operations.

4 Represent a 2-variable polynomial using array. Use this representation to implement

addition of polynomials.

5 Represent a sparse matrix using array. Implement addition and transposition operations

using the representation.

6 Implement singly, doubly and circularly connected linked lists illustrating operations like

addition at different locations, deletion from specified locations and traversal.

ROTOR-2

Ex. No. NAME OF EXPERIMENTS

7 Repeat exercises 2, 3 & 4 with linked structures.

8 Implementation of binary tree with operations like addition, deletion, traversal.

9 Depth first and breadth first traversal of graphs represented using adjacency matrix and list.

10 Implementation of binary search in arrays and on linked Binary Search Tree.

11 Implementation of different sorting algorithm like insertion, quick, heap, bubble and many

more sorting algorithms.

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

xiii

DSA Lab (3CS4-21) Manual Department of Computer Engineering

GENERAL LAB INSTRUCTIONS

DO’S

1. Enter the lab on time and leave at proper time.

2. Wait for the previous class to leave before the next class enters.

3. Keep the bag outside in the respective racks.

4. Utilize lab hours in the corresponding.

5. Turn off the machine before leaving the lab unless a member of lab staff has

specifically told you not to do so.

6. Leave the labs at least as nice as you found them.

7. If you notice a problem with a piece of equipment (e.g., a computer doesn't

respond) or the room in general (e.g., cooling, heating, lighting) please report it to

lab staff immediately. Do not attempt to fix the problem yourself.

DON’TS

1. Don't abuse the equipment.

2. Do not adjust the heat or air conditioners. If you feel the temperature is not properly

set, inform lab staff; we will attempt to maintain a balance that is healthy for people

and machines.

3. Do not attempt to reboot a computer. Report problems to lab staff.

4. Do not remove or modify any software or file without permission.

5. Do not remove printers and machines from the network without being explicitly told to do

so by lab staff.

6. Don't monopolize equipment. If you're going to be away from your machine for more than

10 or

15minutes,logoutbeforeleaving.Thisisbothforthesecurityofyouraccount,andtoensurethatoth

ers are able to use the lab resources while you are not.

7. Don’t use internet, internet chat of any kind in your regular lab schedule.

8. Do not download or upload of MP3, JPG or MPEG files.

9. No games are allowed in the lab sessions.

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

xiv

DSA Lab (3CS4-21) Manual Department of Computer Engineering

10. No hardware including USB drives can be connected or disconnected in the labs without

prior permission of the lab in-charge.

11. No food or drink is allowed in the lab or near any of the equipment. Aside from the fact

that it leaves a mess and attractspests, spilling anything on a keyboard or other piece of

computer equipment could cause permanent, irreparable, and costly damage. (and in fact

has) If you need to eat or drink, take a break and do so in the canteen.

12. Don’t bring any external material in the lab, except your lab record, copy and books.

13. Don’t bring the mobile phones in the lab. If necessary, then keep them in silence mode.

14. Pleasebeconsiderateofthosearoundyou,especiallyintermsofnoiselevel.Whilelabsareanatural

place for conversations of all types, kindly keep the volume turned down.

15. If you are having problems or questions, please go to either the faculty, lab in-charge or

the lab supporting staff. They will help you. We need your full support and cooperation for

smooth functioning of the lab.

LAB SPECIFIC SAFETY RULES

Before entering in the lab

1. All the students are supposed to prepare the theory regarding the next experiment/Program.

2. Students are supposed to bring their lab records as per their lab schedule.

3. Previous experiment/program should be written in the lab record.

4. If applicable trace paper/graph paper must be pasted in lab record with proper labeling.

5. All the students must follow the instructions, failing which he/she may not be allowed in

the lab.

While working in the lab

1. Adhere to experimental schedule as instructed by the lab in-charge/faculty.

2. Get the previously performed experiment/ program signed by the faculty/ lab in charge.

3. GettheOutputofcurrentexperiment/programcheckedbythefaculty/labinchargeinthe lab copy.

4. Each student should work on his/her assigned computer at each turn of the lab.

5. Take responsibility of valuable accessories.

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

1

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

Zero Lab

Turbo C++

C++ tutorial provides basic and advanced concepts of C++. Our C++ tutorial is designed for

beginners and professionals.

C++ is an object-oriented programming language. It is an extension to C programming.

Our C++ tutorial includes all topics of C++ such as first example, control statements, objects

and classes, inheritance, constructor, destructor, this, static, polymorphism, abstraction, abstract

class, interface, namespace, encapsulation, arrays, strings, exception handling, File IO, etc.

What is C++?

C++ is a general purpose, case-sensitive, free-form programming language that supports object-

oriented, procedural, and generic programming. C++ is a middle-level language, as it

encapsulates both high and low-level language features.

Object-Oriented Programming (OOPs)

C++ supports the object-oriented programming, the four major pillar of object-oriented

programming (OOPs) used in C++ are:

1. Inheritance

2. Polymorphism

3. Encapsulation

4. Abstraction

C++ Standard Libraries

Standard C++ programming is divided into three important parts:

o The core library includes the data types, variables and literals, etc.

o The standard library includes the set of functions manipulating strings, files, etc.

o The Standard Template Library (STL) includes the set of methods manipulating a data

structure.

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-inheritance
https://www.javatpoint.com/cpp-inheritance
https://www.javatpoint.com/cpp-oops-concepts

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

2

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

Usage of C++

By the help of C++ programming language, we can develop different types of secured and

robust applications:

o Window application

o Client-Server application

o Device drivers

o Embedded firmware etc

C++ Program: In this tutorial, all C++ programs are given with C++ compiler so that you can easily

change the C++ program code.

File: main.cpp

1. #include <iostream>

2. using namespace std;

3. int main() {

4. cout << "Hello C++ Programming";

5. return 0;

6. }

History of C++ language is interesting to know. Here we are going to discuss brief history of

C++ language. C++ programming language was developed in 1980 by Bjarne Stroustrup at bell

laboratories of AT&T (American Telephone & Telegraph), located in U.S.A.

Bjarne Stroustrup is known as the founder of C++ language.

It was develop for adding a feature of OOP (Object Oriented Programming) in C without

significantly changing the C component.

There are many compilers available for C++. You need to download anyone. Here, we are going to use Turbo

C++. It will work for both C and C++. To install the Turbo C++ software, you need to follow following steps.

1. Download Turbo C++

2. Create turbo c directory inside c drive and extract the tc3.zip inside c:\turboc

3. Double click on install.exe file

4. Click on the tc application file located inside c:\TC\BIN to write the c program

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

3

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

EXPERIMENT-1

OBJECTIVE

Introduction: Objective, scope and outcome of the course.

THEORY

The course is designed to develop skills to design and analyze simple linear and nonlinear data

structures. It strengthens the ability to the students to identify and apply the suitable data structure for the

given real-world problem. It enables them to gain knowledge in practical applications of data structures.

At the end of this lab session, the student will

· Be able to design and analyze the time and space efficiency of the data structure

· Be capable to identity the appropriate data structure for given problem

· Have practical knowledge on the applications of data structures

SCOPE

DSA has great importance in the recruitment process of software companies as well. Recruiters use DSA

to test the ability of the programmer because it shows the problem-solving capability of the candidate.

OUTCOMES

Upon the completion of Data Structure & Algorithm practical course, the student will be able to:

1. To utilize searching and sorting algorithms on given values.

2. To analyze the time and space efficiency of the data structure.

3. To evaluate traversing, insertion and deletion operations on Linear and nonlinear data

structures.

4. To construct the solutions for real time applications.

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

4

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

EXPERIMENT-2

OBJECTIVE

Write a simple C program on a 32 bit compiler to understand the concept of array storage, size of a

word. The program shall be written illustrating the concept of row major and column major storage.

Find the address of element and verify it with the theoretical value. Program may be written for arrays

up to 4-dimensions.

PROGRAM

Part 1
#include <stdio.h>

int main()

{

 int arr[] = { 1, 2, 3, 4, 7, 98, 0, 12, 35, 99, 14 };

 printf("Number of elements:%d", sizeof(arr) / sizeof(arr[0]));

 return 0;

}

Part 2

#include <stdio.h>

void main ()

{ int arr[3][3],i,j;

 for (i=0;i<3;i++)

 {

 for (j=0;j<3;j++)

 {

 printf("Enter a[%d][%d]: ",i,j);

 scanf("%d", &arr[i][j]);

 }

 }

 printf("\n printing the elements\n");

 for (i=0;i<3;i++)

 { printf("\n");

 for (j=0;j<3;j++)

 { printf("%d\t", arr[i][j]);

 } } }

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

5

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

EXPERIMENT-3

OBJECTIVE

Simulate a stack, queue, circular queue and dequeue using a one-dimensional array as storage element.

The program should implement the basic addition, deletion and traversal operations.

PROGRAM

Part 1

#include<stdio.h>

int stack[10], choice, n, top, x, i; // Declaration of variables

void push();

void pop();

void display();

int main()

{

 top = -1; // Initially there is no element in stack

 printf("\n Enter the size of STACK : ");

 scanf("%d", &n);

 printf("\nSTACK IMPLEMENTATION USING ARRAYS\n");

 do

 {

 printf("\n1.PUSH\n2.POP\n3.DISPLAY\n4.EXIT\n");

 printf("\nEnter the choice : ");

 scanf("%d", &choice);

 switch(choice)

 {

 case 1:

 {

 push();

 break;

 }

 case 2:

 {

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

6

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 pop();

 break;

 }

 case 3:

 {

 display();

 break;

 }

 case 4:

 {

 break;

 }

 default:

 {

 printf ("\nInvalid Choice\n");

 }}}

 while(choice!=4);

 return 0;

}

void push()

{

 if(top >= n - 1)

 {

 printf("\nSTACK OVERFLOW\n");

 }

 else

 {

 printf("Enter a value to be pushed : ");

 scanf("%d",&x);

 top++; // TOP is incremented after an element is pushed

 stack[top] = x; // The pushed element is made as TOP

 }}

void pop()

{

 if(top <= -1)

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

7

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 {

 printf("\nSTACK UNDERFLOW\n");

 }

 else

 {

 printf("\nThe popped element is %d",stack[top]);

 top--; // Decrement TOP after a pop

 }}

void display()

{

 if(top >= 0)

 {

 // Print the stack

 printf("\nELEMENTS IN THE STACK\n\n");

 for(i = top ; i >= 0 ; i--)

 printf("%d\t",stack[i]);

 }

 else

 {

 printf("\nEMPTY STACK\n");

 }}

Output:

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

8

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

Part 2

 #include<stdio.h>

#define MAX 50

void enqueue();

void dequeue();

void display();

int queue_array[MAX];

int rear = - 1;

int front = - 1;

main()

{

 int choice;

 while(1)

 {

 printf("1.Insert element to queue \n");

 printf("2.Delete element from queue \n");

 printf("3.Display all elements of queue \n");

 printf("4.Quit \n");

 printf("Enter your choice : ");

 scanf("%d", &choice);

 switch (choice)

 {

 case 1:

 enqueue();

 break;

 case 2:

 dequeue();

 break;

 case 3:

 display();

 break;

 case 4:

 exit(1);

 default:

 printf("Wrong choice \n");

 } /* End of switch */

 } /* End of while */

} /* End of main() */

void enqueue()

{

 int add_item;

 if (rear == MAX - 1)

 printf("Queue Overflow \n");

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

9

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 else

 {

 if (front == - 1)

 /*If queue is initially empty */

 front = 0;

 printf("Inset the element in queue : ");

 scanf("%d", &add_item);

 rear = rear + 1;

 queue_array[rear] = add_item;

 }

} /* End of insert() */

void dequeue()

{

 if (front == - 1 || front > rear)

 {

 printf("Queue Underflow \n");

 return ;

 }

 else

 {

 printf("Element deleted from queue is : %d\n", queue_array[front]);

 front = front + 1;

 }

} /* End of delete() */

void display()

{

 int i;

 if (front == - 1)

 printf("Queue is empty \n");

 else

 {

 printf("Queue is : \n");

 for (i = front; i <= rear; i++)

 printf("%d ", queue_array[i]);

 printf("\n");

 }

}

Output:

1. Insert element to queue

2. Delete element from queue

3. Display all elements of queue

4. Quit

Enter your choice : 1

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

10

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

Inset the element in queue : 10

1. Insert element to queue

2. Delete element from queue

3. Display all elements of queue

4. Quit

Enter your choice : 1

Inset the element in queue : 15

1. Insert element to queue

2. Delete element from queue

3. Display all elements of queue

4. Quit

Enter your choice : 1

Inset the element in queue : 20

1. Insert element to queue

2. Delete element from queue

3. Display all elements of queue

4. Quit

Enter your choice : 1

Inset the element in queue : 30

1. Insert element to queue

2. Delete element from queue

3. Display all elements of queue

4. Quit

Enter your choice : 2

Element deleted from queue is : 10

1. Insert element to queue

2. Delete element from queue

3. Display all elements of queue

4. Quit

Enter your choice: 3

Queue is: 15 20 30

1. Insert element to queue

2. Delete element from queue

3. Display all elements of queue

4. Quit

Enter your choice : 4

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

11

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

Part 3

#include <stdio.h>

#define max 6

int queue[max]; // array declaration

int front=-1;

int rear=-1;

// function to insert an element in a circular queue

void enqueue(int element)

{

 if(front==-1 && rear==-1) // condition to check queue is empty

 {

 front=0;

 rear=0;

 queue[rear]=element;

 }

 else if((rear+1)%max==front) // condition to check queue is full

 {

 printf("Queue is overflow…");

 }

 else

 {

 rear=(rear+1)%max; // rear is incremented

 queue[rear]=element; // assigning a value to the queue at the rear position.

 } }

// function to delete the element from the queue

int dequeue()

{

 if((front==-1) && (rear==-1)) // condition to check queue is empty

 {

 printf("\nQueue is underflow...");

 }

 else if(front==rear)

{

 printf("\nThe dequeued element is %d", queue[front]);

 front=-1;

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

12

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 rear=-1;

}

else

{

 printf("\nThe dequeued element is %d", queue[front]);

 front=(front+1)%max;

} }

// function to display the elements of a queue

void display()

{

 int i=front;

 if(front==-1 && rear==-1)

 {

 printf("\n Queue is empty...");

 }

 else

 {

 printf("\nElements in a Queue are :");

 while(i<=rear)

 {

 printf("%d,", queue[i]);

 i=(i+1)%max;

 } }}

int main()

{

 int choice=1, x; // variables declaration

 while(choice<4 && choice!=0) // while loop

 { printf("\n Press 1: Insert an element");

 printf("\nPress 2: Delete an element");

 printf("\nPress 3: Display the element");

 printf("\nEnter your choice");

 scanf("%d", &choice);

 switch(choice)

 { case 1:

 printf("Enter the element which is to be inserted");

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

13

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 scanf("%d", &x);

 enqueue(x);

 break;

 case 2:

 dequeue();

 break;

 case 3:

 display();

 }}

 return 0;

}

Output:

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

14

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

Part 4

#include <stdio.h>

#define size 5

int deque[size];

int f = -1, r = -1;

// insert_front function will insert the value from the front

void insert_front(int x)

{

 if((f==0 && r==size-1) || (f==r+1))

 {

 printf("Overflow");

 }

 else if((f==-1) && (r==-1))

 {

 f=r=0;

 deque[f]=x;

 }

 else if(f==0)

 {

 f=size-1;

 deque[f]=x;

 }

 else

 {

 f=f-1;

 deque[f]=x;

 }

}

// insert_rear function will insert the value from the rear

void insert_rear(int x)

{

 if((f==0 && r==size-1) || (f==r+1))

 {

 printf("Overflow");

 }

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

15

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 else if((f==-1) && (r==-1))

 {

 r=0;

 deque[r]=x;

 }

 else if(r==size-1)

 {

 r=0;

 deque[r]=x;

 }

 else

 {

 r++;

 deque[r]=x;

 }

}

// display function prints all the value of deque.

void display()

{

 int i=f;

 printf("\nElements in a deque are: ");

 while(i!=r)

 {

 printf("%d ",deque[i]);

 i=(i+1)%size;

 }

 printf("%d",deque[r]);

}

 // getfront function retrieves the first value of the deque.

void getfront()

{

 if((f==-1) && (r==-1))

 {

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

16

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 printf("Deque is empty");

 }

 else

 {

 printf("\nThe value of the element at front is: %d", deque[f]);

 } }

// getrear function retrieves the last value of the deque.

void getrear()

{

 if((f==-1) && (r==-1))

 {

 printf("Deque is empty");

 }

 else

 {

 printf("\nThe value of the element at rear is %d", deque[r]);

 } }

// delete_front() function deletes the element from the front

void delete_front()

{

 if((f==-1) && (r==-1))

 {

 printf("Deque is empty");

 }

 else if(f==r)

 {

 printf("\nThe deleted element is %d", deque[f]);

 f=-1;

 r=-1;

 }

 else if(f==(size-1))

 {

 printf("\nThe deleted element is %d", deque[f]);

 f=0;

 }

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

17

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 else

 {

 printf("\nThe deleted element is %d", deque[f]);

 f=f+1;

 } }

// delete_rear() function deletes the element from the rear

void delete_rear()

{

 if((f==-1) && (r==-1))

 {

 printf("Deque is empty");

 }

 else if(f==r)

 {

 printf("\nThe deleted element is %d", deque[r]);

 f=-1;

 r=-1;

 }

 else if(r==0)

 {

 printf("\nThe deleted element is %d", deque[r]);

 r=size-1;

 }

 else

 {

 printf("\nThe deleted element is %d", deque[r]);

 r=r-1;

 }

}

int main()

{

 insert_front(20);

 insert_front(10);

 insert_rear(30);

 insert_rear(50);

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

18

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 insert_rear(80);

 display(); // Calling the display function to retrieve the values of deque

 getfront(); // Retrieve the value at front-end

 getrear(); // Retrieve the value at rear-end

 delete_front();

 delete_rear();

 display(); // calling display function to retrieve values after deletion

 return 0;

}

Output:

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

19

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

EXPERIMENT-4

OBJECTIVE

Represent a 2-variable polynomial using array. Use this representation to implement addition of

polynomials.

PROGRAM

Part 1

#include <stdio.h>
#include<stdlib.h>
struct Term
{
 int coeff;
 int exp;
};

struct Poly
{
 int n;
 struct Term *terms;
};

void create (struct Poly *p)
{
 int i;

 printf ("Enter Number of terms: ");
 scanf ("%d", &p->n);

 p->terms = (struct Term *) malloc (p->n * sizeof (struct Term));

 printf ("Enter terms:\n");
 for (i = 0; i < p->n; i++)
 scanf ("%d%d", &p->terms[i].coeff, &p->terms[i].exp);
 printf ("\n");
}

void display (struct Poly p)
{
 int i;
 for (i = 0; i < p.n; i++)
 {
 printf ("%dx%d", p.terms[i].coeff, p.terms[i].exp);
 if (i + 1 < p.n)
 printf (" + ");
 }
 printf ("\n");
}

struct Poly *add (struct Poly *p1, struct Poly *p2)

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

20

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

{
 int i, j, k;
 struct Poly *sum;

 sum = (struct Poly *) malloc (sizeof (struct Poly));
 sum->terms = (struct Term *) malloc ((p1->n + p2->n) * sizeof (struct Term));

 i = j = k = 0;

 while (i < p1->n && j < p2->n)
 {
 if (p1->terms[i].exp > p2->terms[j].exp)
 sum->terms[k++] = p1->terms[i++];
 else if (p1->terms[i].exp < p2->terms[j].exp)
 sum->terms[k++] = p2->terms[j++];
 else
 {
 sum->terms[k].exp = p1->terms[i].exp;
 sum->terms[k++].coeff = p1->terms[i++].coeff + p2->terms[j++].coeff;
 }
 }

 for (; i < p1->n; i++)
 sum->terms[k++] = p1->terms[i];
 for (; j < p2->n; j++)
 sum->terms[k++] = p2->terms[j];

 sum->n = k;
 return sum;
}

int main()
{
 struct Poly p1, p2, *p3;

 printf ("Enter Polynomial 1:\n");
 create (&p1);
 printf ("Enter Polynomial 2:\n");
 create (&p2);

 p3 = add (&p1, &p2);
 printf ("\n");

 printf ("Polynomial 1 is: ");
 display (p1);
 printf ("\n");

 printf ("Polynomial 2 is: ");
 display (p2);
 printf ("\n");

 printf ("Polynomial 3 is: ");
 display (*p3);

 return 0;
}

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

21

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

Output:

Part 2

#include<stdio.h>

 /* declare structure for polynomial */

 struct poly

 {

 int coeff;

 int expo;

 };

 /* declare three arrays p1, p2, p3 of type structure poly.

 * each polynomial can have maximum of ten terms

 * addition result of p1 and p2 is stored in p3 */

 struct poly p1[10],p2[10],p3[10];

 /* function prototypes */

 int readPoly(struct poly []);

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

22

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 int addPoly(struct poly [],struct poly [],int ,int ,struct poly []);

 void displayPoly(struct poly [],int terms);

 int main()

 {

 int t1,t2,t3;

 /* read and display first polynomial */

 t1=readPoly(p1);

 printf(" \n First polynomial : ");

 displayPoly(p1,t1);

 /* read and display second polynomial */

 t2=readPoly(p2);

 printf(" \n Second polynomial : ");

 displayPoly(p2,t2);

 /* add two polynomials and display resultant polynomial */

 t3=addPoly(p1,p2,t1,t2,p3);

 printf(" \n\n Resultant polynomial after addition : ");

 displayPoly(p3,t3);

 printf("\n");

 return 0;

 }

 int readPoly(struct poly p[10])

 {

 int t1,i;

 printf("\n\n Enter the total number of terms in the polynomial:");

 scanf("%d",&t1);

 printf("\n Enter the COEFFICIENT and EXPONENT in DESCENDING ORDER\n");

 for(i=0;i<t1;i++)

 {

 printf(" Enter the Coefficient(%d): ",i+1);

 scanf("%d",&p[i].coeff);

 printf(" Enter the exponent(%d): ",i+1);

 scanf("%d",&p[i].expo); /* only statement in loop */

 }

 return(t1);

 }

int addPoly(struct poly p1[10],struct poly p2[10],int t1,int t2,struct poly p3[10])

 {

 int i,j,k;

 i=0;

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

23

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 j=0;

 k=0;

 while(i<t1 && j<t2)

 {

 if(p1[i].expo==p2[j].expo)

 {

 p3[k].coeff=p1[i].coeff + p2[j].coeff;

 p3[k].expo=p1[i].expo;

 i++;

 j++;

 k++;

 }

 else if(p1[i].expo>p2[j].expo)

 {

 p3[k].coeff=p1[i].coeff;

 p3[k].expo=p1[i].expo;

 i++;

 k++;

 }

 else
 {

 p3[k].coeff=p2[j].coeff;

 p3[k].expo=p2[j].expo;

 j++;

 k++;

 }

 }

 /* for rest over terms of polynomial 1 */

 while(i<t1)

 {

 p3[k].coeff=p1[i].coeff;

 p3[k].expo=p1[i].expo;

 i++;

 k++;

 }

 /* for rest over terms of polynomial 2 */

 while(j<t2)

 {

 p3[k].coeff=p2[j].coeff;

 p3[k].expo=p2[j].expo;

 j++;

 k++;

 }

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

24

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 return(k); /* k is number of terms in resultant polynomial*/

 }

 void displayPoly(struct poly p[10],int term)

 {

 int k;

 for(k=0;k<term-1;k++)

 printf("%d(x^%d)+",p[k].coeff,p[k].expo);

 printf("%d(x^%d)",p[term-1].coeff,p[term-1].expo);

}

Output:

Enter the total number of terms in the polynomial:4

Enter the COEFFICIENT and EXPONENT in DESCENDING ORDER

Enter the Coefficient(1): 3

Enter the exponent(1): 4

Enter the Coefficient(2): 7

Enter the exponent(2): 3

Enter the Coefficient(3): 5

Enter the exponent(3): 1

Enter the Coefficient(4): 8

Enter the exponent(4): 0

First polynomial : 3(x^4)+7(x^3)+5(x^1)+8(x^0)

Enter the total number of terms in the polynomial:5

Enter the COEFFICIENT and EXPONENT in DESCENDING ORDER

Enter the Coefficient(1): 7

Enter the exponent(1): 5

Enter the Coefficient(2): 6

Enter the exponent(2): 4

Enter the Coefficient(3): 8

Enter the exponent(3): 2

Enter the Coefficient(4): 9

Enter the exponent(4): 1

Enter the Coefficient(5): 2

Enter the exponent(5): 0

Second polynomial : 7(x^5)+6(x^4)+8(x^2)+9(x^1)+2(x^0)

Resultant polynomial after addition :

7(x^5)+9(x^4)+7(x^3)+8(x^2)+14(x^1)+10(x^0)

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

25

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

EXPERIMENT-5

OBJECTIVE

Represent a sparse matrix using array. Implement addition and transposition operations using the

representation.

PROGRAM

#include<stdio.h>

 #define MAX 20

 void printsparse(int[][3]);

void readsparse(int[][3]);

void transpose(int[][3],int[][3]);

 int main()

{

int b1[MAX][3],b2[MAX][3],m,n;

printf("Enter the size of matrix (rows,columns):");

scanf("%d%d",&m,&n);

b1[0][0]=m;

b1[0][1]=n;

readsparse(b1);

transpose(b1,b2);

printsparse(b2);

}

 void readsparse(int b[MAX][3])

{

int i,t;

printf("\nEnter no. of non-zero elements:");

scanf("%d",&t);

b[0][2]=t;

for(i=1;i<=t;i++)

{

printf("\nEnter the next triple(row,column,value):");

scanf("%d%d%d",&b[i][0],&b[i][1],&b[i][2]);

}

}

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

26

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

void printsparse(int b[MAX][3])

{

int i,n;

n=b[0][2]; //no of 3-triples

printf("\nAfter Transpose:\n");

printf("\nrow\t\tcolumn\t\tvalue\n");

for(i=0;i<=n;i++)

printf("%d\t\t%d\t\t%d\n",b[i][0],b[i][1],b[i][2]);

}

void transpose(int b1[][3],int b2[][3])

{

int i,j,k,n;

b2[0][0]=b1[0][1];

b2[0][1]=b1[0][0];

b2[0][2]=b1[0][2];

k=1;

n=b1[0][2];

for(i=0;i<b1[0][1];i++)

for(j=1;j<=n;j++)

//if a column number of current triple==i then insert the current triple in b2

if(i==b1[j][1])

{

b2[k][0]=i;

b2[k][1]=b1[j][0];

b2[k][2]=b1[j][2];

k++;

}

}

Output:

Enter the size of matrix (rows,columns):3 4

Enter no. of non-zero elements:4

Enter the next triple(row,column,value):1 0 5

Enter the next triple(row,column,value):1 2 3

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

27

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

Enter the next triple(row,column,value):2 1 1

Enter the next triple(row,column,value):2 3 2

After Transpose:

row column value

4 3 4

0 1 5

1 2 1

2 1 3

 3 2 2

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

28

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

EXPERIMENT-6

OBJECTIVE

Implement singly, doubly and circularly connected linked lists illustrating operations like addition at

different locations, deletion from specified locations and traversal.

PROGRAM

Part 1

#include<stdio.h>

#include<stdlib.h>

struct Node

{

 int Data;

 Struct Node *next;

};

void insertStart (struct Node **head, int data)

{

 struct Node *newNode = (struct Node *) malloc (sizeof (struct Node));

 newNode - > data = data;

 newNode - > next = *head;

 //changing the new head to this freshly entered node

 *head = newNode;

}

void deleteStart(struct Node **head)

{

 struct Node *temp = *head;

 // if there are no nodes in Linked List can't delete

 if (*head == NULL)

 {

 printf ("Linked List Empty, nothing to delete");

 return;

 }

 // move head to next node

 *head = (*head)->next;

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

29

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 free (temp);

}

void display(struct Node* node)

{

 printf("Linked List: ");

 // as linked list will end when Node is Null

 while(node!=NULL){

 printf("%d ",node->data);

 node = node->next;

 }

 printf("\n");

}

int main ()

{

 struct Node *head = NULL;

 // Need '&' i.e. address as we need to change head

 insertStart (&head, 100);

 insertStart (&head, 80);

 insertStart (&head, 60);

 insertStart (&head, 40);

 insertStart (&head, 20);

 // No Need for '&' as not changing head in display operation

 display (head);

 deleteStart (&head);

 deleteStart (&head);

 display (head);

 return 0;

}

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

30

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

Output:

100 Inserted

80 Inserted

60 Inserted

40 Inserted

20 Inserted

Linked List: 20 40 60 80 100

20 deleted

40 deleted

Linked List: 60 80 100

Part 2

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <stdbool.h>

struct node {

 int data;

 int key;

 struct node *next;

 struct node *prev;

};

//this link always point to first Link

struct node *head = NULL;

//this link always point to last Link

struct node *last = NULL;

struct node *current = NULL;

//is list empty

bool isEmpty() {

 return head == NULL;

}

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

31

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

int length() {

 int length = 0;

 struct node *current;

 for(current = head; current != NULL; current = current->next){

 length++;

 }

 return length;

}

//display the list in from first to last

void displayForward() {

 //start from the beginning

 struct node *ptr = head;

 //navigate till the end of the list

 printf("\n[");

 while(ptr != NULL) {

 printf("(%d,%d) ",ptr->key,ptr->data);

 ptr = ptr->next;

 }

 printf("]");

}

//display the list from last to first

void displayBackward() {

 //start from the last

 struct node *ptr = last;

 //navigate till the start of the list

 printf("\n[");

while(ptr != NULL) {

 //print data

 printf("(%d,%d) ",ptr->key,ptr->data);

 //move to next item

 ptr = ptr ->prev;

 }}

//insert link at the first location

void insertFirst(int key, int data) {

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

32

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 //create a link

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data = data;

 if(isEmpty()) {

 //make it the last link

 last = link;

 } else {

 //update first prev link

 head->prev = link;

 }

 //point it to old first link

 link->next = head;

 //point first to new first link

 head = link;

}

//insert link at the last location

void insertLast(int key, int data) {

 //create a link

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data = data;

 if(isEmpty()) {

 //make it the last link

 last = link;

 } else {

 //make link a new last link

 last->next = link;

 //mark old last node as prev of new link

 link->prev = last;

 }

 //point last to new last node

 last = link;

}

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

33

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

//delete first item

struct node* deleteFirst() {

 //save reference to first link

 struct node *tempLink = head;

 //if only one link

 if(head->next == NULL){

 last = NULL;

 } else {

 head->next->prev = NULL;

 }

 head = head->next;

 //return the deleted link

 return tempLink;

}

//delete link at the last location

struct node* deleteLast() {

 //save reference to last link

 struct node *tempLink = last;

 //if only one link

 if(head->next == NULL) {

 head = NULL;

 } else {

 last->prev->next = NULL;

 }

 last = last->prev;

 //return the deleted link

 return tempLink;

}

//delete a link with given key

struct node* delete(int key) {

 //start from the first link

 struct node* current = head;

 struct node* previous = NULL;

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

34

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 //if list is empty

 if(head == NULL) {

 return NULL;

 }

 //navigate through list

 while(current->key != key) {

 //if it is last node

 if(current->next == NULL) {

 return NULL;

 } else {

 //store reference to current link

 previous = current;

 //move to next link

 current = current->next;

 }

 }

 //found a match, update the link

 if(current == head) {

 //change first to point to next link

 head = head->next;

 } else {

 //bypass the current link

 current->prev->next = current->next;

 }

 if(current == last) {

 //change last to point to prev link

 last = current->prev;

 } else {

 current->next->prev = current->prev;

 }

 return current;

}

bool insertAfter(int key, int newKey, int data) {

 //start from the first link

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

35

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 struct node *current = head;

 //if list is empty

 if(head == NULL) {

 return false;

 }

 //navigate through list

 while(current->key != key) {

 //if it is last node

 if(current->next == NULL) {

 return false;

 } else {

 //move to next link

 current = current->next;

 }

 }

 //create a link

 struct node *newLink = (struct node*) malloc(sizeof(struct node));

 newLink->key = newKey;

 newLink->data = data;

 if(current == last) {

 newLink->next = NULL;

 last = newLink;

 } else {

 newLink->next = current->next;

 current->next->prev = newLink;

 }

 newLink->prev = current;

 current->next = newLink;

 return true;

}

void main() {

 insertFirst(1,10);

 insertFirst(2,20);

 insertFirst(3,30);

 insertFirst(4,1);

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

36

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 insertFirst(5,40);

 insertFirst(6,56);

 printf("\nList (First to Last): ");

 displayForward();

 printf("\n");

 printf("\nList (Last to first): ");

 displayBackward();

 printf("\nList , after deleting first record: ");

 deleteFirst();

 displayForward();

 printf("\nList , after deleting last record: ");

 deleteLast();

 displayForward();

 printf("\nList , insert after key(4) : ");

 insertAfter(4,7, 13);

 displayForward();

 printf("\nList , after delete key(4) : ");

 delete(4);

 displayForward();

}

Output:

List (First to Last):

[(6,56) (5,40) (4,1) (3,30) (2,20) (1,10)]

List (Last to first):

[(1,10) (2,20) (3,30) (4,1) (5,40) (6,56)]

List , after deleting first record:

[(5,40) (4,1) (3,30) (2,20) (1,10)]

List , after deleting last record:

[(5,40) (4,1) (3,30) (2,20)]

List , insert after key(4) :

[(5,40) (4,1) (7,13) (3,30) (2,20)]

List , after delete key(4) :

[(5,40) (4,13) (3,30) (2,20)]

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

37

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

Part 3

#include<stdio.h>

#include<stdlib.h>

struct node

{

 int data;

 struct node *next;

};

struct node *head;

void beginsert ();

void lastinsert ();

void randominsert();

void begin_delete();

void last_delete();

void random_delete();

void display();

void search();

void main ()

{

 int choice =0;

 while(choice != 7)

 {

 printf("\n*********Main Menu*********\n");

 printf("\nChoose one option from the following list ...\n");

 printf("\n===\n");

 printf("\n1.Insert in begining\n2.Insert at last\n3.Delete from Beginning\n4.Delete from

last\n5.Search for an element\n6.Show\n7.Exit\n");

 printf("\nEnter your choice?\n");

 scanf("\n%d",&choice);

 switch(choice)

 {

 case 1:

 beginsert();

 break;

 case 2:

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

38

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 lastinsert();

 break;

 case 3:

 begin_delete();

 break;

 case 4:

 last_delete();

 break;

 case 5:

 search();

 break;

 case 6:

 display();

 break;

 case 7:

 exit(0);

 break;

 default:

 printf("Please enter valid choice..");

 }

 }

}

void beginsert()

{

 struct node *ptr,*temp;

 int item;

 ptr = (struct node *)malloc(sizeof(struct node));

 if(ptr == NULL)

 {

 printf("\nOVERFLOW");

 }

 else

 {

 printf("\nEnter the node data?");

 scanf("%d",&item);

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

39

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 ptr -> data = item;

 if(head == NULL)

 {

 head = ptr;

 ptr -> next = head;

 }

 else

 {

 temp = head;

 while(temp->next != head)

 temp = temp->next;

 ptr->next = head;

 temp -> next = ptr;

 head = ptr;

 }

 printf("\nnode inserted\n");

 }

}

void lastinsert()

{

 struct node *ptr,*temp;

 int item;

 ptr = (struct node *)malloc(sizeof(struct node));

 if(ptr == NULL)

 {

 printf("\nOVERFLOW\n");

 }

 else

 {

 printf("\nEnter Data?");

 scanf("%d",&item);

 ptr->data = item;

 if(head == NULL)

 {

 head = ptr;

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

40

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 ptr -> next = head;

 }

 else

 {

 temp = head;

 while(temp -> next != head)

 {

 temp = temp -> next;

 }

 temp -> next = ptr;

 ptr -> next = head;

 }

 printf("\nnode inserted\n");

 }

}

void begin_delete()

{

 struct node *ptr;

 if(head == NULL)

 {

 printf("\nUNDERFLOW");

 }

 else if(head->next == head)

 {

 head = NULL;

 free(head);

 printf("\nnode deleted\n");

 }

 else

 { ptr = head;

 while(ptr -> next != head)

 ptr = ptr -> next;

 ptr->next = head->next;

 free(head);

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

41

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 head = ptr->next;

 printf("\nnode deleted\n");

 }

}

void last_delete()

{

 struct node *ptr, *preptr;

 if(head==NULL)

 {

 printf("\nUNDERFLOW");

 }

 else if (head ->next == head)

 {

 head = NULL;

 free(head);

 printf("\nnode deleted\n");

 }

 else

 {

 ptr = head;

 while(ptr ->next != head)

 {

 preptr=ptr;

 ptr = ptr->next;

 }

 preptr->next = ptr -> next;

 free(ptr);

 printf("\nnode deleted\n");

 }

}

void search()

{

 struct node *ptr;

 int item,i=0,flag=1;

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

42

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 ptr = head;

 if(ptr == NULL)

 {

 printf("\nEmpty List\n");

 }

 else

 {

 printf("\nEnter item which you want to search?\n");

 scanf("%d",&item);

 if(head ->data == item)

 {

 printf("item found at location %d",i+1);

 flag=0;

 }

 else

 {

 while (ptr->next != head)

 {

 if(ptr->data == item)

 {

 printf("item found at location %d ",i+1);

 flag=0;

 break;

 }

 else

 {

 flag=1;

 }

 i++;

 ptr = ptr -> next;

 }

 }

 if(flag != 0)

 {

 printf("Item not found\n");

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

43

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 } } }

void display()

{

 struct node *ptr;

 ptr=head;

 if(head == NULL)

 {

 printf("\nnothing to print");

 }

 else

 { printf("\n printing values ... \n");

 while(ptr -> next != head)

 {

 printf("%d\n", ptr -> data);

 ptr = ptr -> next;

 }

 printf("%d\n", ptr -> data);

 } }

Output:

Choose one option from the following list ...

===

1.Insert in begining

2.Insert at last

3.Delete from Beginning

4.Delete from last

5.Search for an element

6.Show

7.Exit

Enter your choice?

1

Enter the node data?10

node inserted

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

44

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

EXPERIMENT-7

OBJECTIVE

Repeat experiment 3, 4, 5 with linked structure.

PROGRAM

Part 1

#include <stdio.h>

#include <stdlib.h>

// Structure to create a node with data and the next pointer

struct node {

 int info;

 struct node *ptr;

}*top,*top1,*temp;

int count = 0;

// Push() operation on a stack

void push(int data) {

 if (top == NULL)

 {

 top =(struct node *)malloc(1*sizeof(struct node));

 top->ptr = NULL;

 top->info = data;

 }

 else

 {

 temp =(struct node *)malloc(1*sizeof(struct node));

 temp->ptr = top;

 temp->info = data;

 top = temp;

 }

 count++;

 printf("Node is Inserted\n\n");

}

int pop() {

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

45

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 top1 = top;

 if (top1 == NULL)

 {

 printf("\nStack Underflow\n");

 return -1;

 }

 else

 top1 = top1->ptr;

 int popped = top->info;

 free(top);

 top = top1;

 count--;

 return popped;

}

void display() {

 // Display the elements of the stack

 top1 = top;

 if (top1 == NULL)

 {

 printf("\nStack Underflow\n");

 return;

 }

 printf("The stack is \n");

 while (top1 != NULL)

 {

 printf("%d--->", top1->info);

 top1 = top1->ptr;

 }

 printf("NULL\n\n");

}

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

46

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

int main() {

 int choice, value;

 printf("\nImplementation of Stack using Linked List\n");

 while (1) {

 printf("\n1. Push\n2. Pop\n3. Display\n4. Exit\n");

 printf("\nEnter your choice : ");

 scanf("%d", &choice);

 switch (choice) {

 case 1:

 printf("\nEnter the value to insert: ");

 scanf("%d", &value);

 push(value);

 break;

 case 2:

 printf("Popped element is :%d\n", pop());

 break;

 case 3:

 display();

 break;

 case 4:

 exit(0);

 break;

 default:

 printf("\nWrong Choice\n");

 }

 }

}

Output:

Implementation of Stack using Linked List

1. Push

2. Pop

3. Display

4. Exit

Enter your choice : 1

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

47

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

Enter the value to insert: 12

Node is Inserted

1. Push

2. Pop

3. Display

4. Exit

Enter your choice : 1

Enter the value to insert: 45

Node is Inserted

1. Push

2. Pop

3. Display

4. Exit

Enter your choice : 1

Enter the value to insert: 56

Node is Inserted

1. Push

2. Pop

3. Display

4. Exit

Enter your choice : 3

The stack is

56--->45--->12--->NULL

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

48

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

Part 2

#include < stdio.h >

#include < stdlib.h >

// Structure to create a node with data and the next pointer

struct node {

 int data;

 struct node * next;

};

struct node * front = NULL;

struct node * rear = NULL;

// Enqueue() operation on a queue

void enqueue(int value) {

 struct node * ptr;

 ptr = (struct node *) malloc(sizeof(struct node));

 ptr - > data = value;

 ptr - > next = NULL;

 if ((front == NULL) && (rear == NULL)) {

 front = rear = ptr;

 } else {

 rear - > next = ptr;

 rear = ptr;

 }

 printf("Node is Inserted\n\n");

}

// Dequeue() operation on a queue

int dequeue() {

 if (front == NULL) {

 printf("\nUnderflow\n");

 return -1;

 } else {

 struct node * temp = front;

 int temp_data = front - > data;

 front = front - > next;

 free(temp);

 return temp_data;

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

49

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 }}// Display all elements of the queue

void display() {

 struct node * temp;

 if ((front == NULL) && (rear == NULL)) {

 printf("\nQueue is Empty\n");

 } else {

 printf("The queue is \n");

 temp = front;

 while (temp) {

 printf("%d--->", temp - > data);

 temp = temp - > next;

 }

 printf("NULL\n\n");

 }}

int main() {

 int choice, value;

 printf("\nImplementation of Queue using Linked List\n");

 while (choice != 4) {

 printf("1.Enqueue\n2.Dequeue\n3.Display\n4.Exit\n");

 printf("\nEnter your choice : ");

 scanf("%d", & choice);

 switch (choice) {

 case 1:

 printf("\nEnter the value to insert: ");

 scanf("%d", & value);

 enqueue(value);

 break;

 case 2:

 printf("Popped element is :%d\n", dequeue());

 break;

 case 3:

 display();

 break;

 case 4:

 exit(0);

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

50

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

 break;

 default:

 printf("\nWrong Choice\n");

 } }

 return 0;}

Output:

Implementation of Queue using Linked List

1. Enqueue

2. Dequeue

3. Display

4. Exit

Enter your choice: 1

Enter the value to insert: 12

Node is Inserted

1.Enqueue

2.Dequeue

3.Display

4.Exit

Enter your choice: 1

Enter the value to insert: 45

Node is Inserted

1.Enqueue

2.Dequeue

3.Display

4.Exit

Enter your choice: 1

Enter the value to insert: 56

Node is Inserted

1.Enqueue

2.Dequeue

3.Display

4.Exit

Enter your choice : 3

The queue is

12--->45--->56--->NULL

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

51

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

EXPERIMENT-8

OBJECTIVE

 Implementation of binary tree with operations like addition, deletion, traversal.

PROGRAM

#include<stdio.h>

#include<stdlib.h>

struct bst{

int data;

struct bst* left;

struct bst* right;

}*root;

struct bst* insert(struct bst* root, int num)

{

if(root==NULL)

{

root=(struct bst*)malloc(sizeof(struct bst));

root->data=num;

root->left=NULL;

root->right=NULL;

}

else

{

if(num<root->data)

{

else

{

}

}

root->left=insert(root->left,num);

}

root->right=insert(root->right,num);

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

52

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

return root;

}

void in_order(struct bst* root)

{

if(root!=NULL)

{

in_order(root->left);

printf("%d\t",root->data);

in_order(root->right);

}

}

void search(struct bst* root,int num)

{

if(root==NULL)

{

printf("\nnumber not found.");

}

else if(root->data==num)

{

printf("\ndata is found %d",num);

}

else if(root->data>num)

{

}

else

{

}

}

search(root->left,num);

search(root->right,num);

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

53

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

struct bst* Delete(struct bst* root,int num)

{

if(root==NULL)

{

printf("\nnumber not found.");

}

else if(root->data==num)

{

if(root->left==NULL&&root->right==NULL)

{

struct bst * temp = root;

free(temp);

printf("\nNo. is deleted.");

return NULL;

}

else if(root->left==NULL && root->right!=NULL)

{

struct bst*temp=root;

root=root->right;

free(temp);

printf("\nNo. is deleted.");

return root;

}

else if(root->left!=NULL && root->right==NULL)

{

struct bst*temp=root;

root=root->left;

free(temp);

printf("\nNo. is deleted.");

return root;

}

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

54

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

else

{

struct bst *temp; temp=root; root=root->right;

while(root->left!=NULL)

{

root=root->left;

 }

temp->data=root->data;

temp->right=Delete(temp->right, root-

>data); return temp;

}

}

else if(root->data>num)

{

root->left=Delete(root->left,num);

}

else

{

root->right=Delete(root->right,num);

}

return root;

}

void main()

{

int arr[] = {20, 17, 6, 8,9, 25, 5, 27,7};

int i;

for(i=0;i<9;i++)

root=insert(root,arr[i]);

printf("\nIN order treversd list is : ");

in_order(root);

search(root,20);

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

55

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

root = Delete(root,20);

printf("\nIN order treversd list is : ");

in_order(root);

}

OUTPUT:

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

56

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

EXPERIMENT-9

OBJECTIVE

Depth first and breadth first traversal of graphs represented using adjacency matrix and list.

PROGRAM

// BFS in C

 #include <stdio.h>

#include <stdlib.h>

#define SIZE 40

struct queue {

int items[SIZE];

int front;

int rear;

};

struct queue* createQueue();

void enqueue(struct queue* q, int);

int dequeue(struct queue* q);

void display(struct queue* q);

int isEmpty(struct queue* q);

void printQueue(struct queue* q);

struct node {

int vertex;

struct node* next;

};

struct node* createNode(int);

struct Graph {

int numVertices;

struct node** adjLists;

int* visited;

};

// BFS algorithm

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

57

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

void bfs(struct Graph* graph, int startVertex) {

struct queue* q = createQueue();

graph->visited[startVertex] = 1; enqueue(q, startVertex);

while (!isEmpty(q)) {

printQueue(q);

int currentVertex = dequeue(q);

printf("Visited %d\n", currentVertex);

struct node* temp = graph->adjLists[currentVertex];

while (temp) {

int adjVertex = temp->vertex;

if (graph->visited[adjVertex] == 0) {

graph->visited[adjVertex] = 1;

enqueue(q, adjVertex);

}

temp = temp->next;

} }}

// Creating a node

struct node* createNode(int v) {

struct node* newNode = malloc(sizeof(struct node));

newNode->vertex = v;

newNode->next = NULL;

return newNode; }

// Creating a graph

struct Graph* createGraph(int vertices) {

struct Graph* graph = malloc(sizeof(struct Graph));

graph->numVertices = vertices;

graph->adjLists = malloc(vertices * sizeof(struct node*));

graph->visited = malloc(vertices * sizeof(int));

int i;

for (i = 0; i < vertices; i++) {

graph->adjLists[i] = NULL;

graph->visited[i] = 0; } return graph;}

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

58

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

// Add edge

void addEdge(struct Graph* graph, int src, int dest) {

// Add edge from src to dest

struct node* newNode = createNode(dest);

newNode->next = graph->adjLists[src];

graph->adjLists[src] = newNode;

// Add edge from dest to src

newNode = createNode(src);

newNode->next = graph->adjLists[dest];

graph->adjLists[dest] = newNode;}

// Create a queue

struct queue* createQueue() {

struct queue* q = malloc(sizeof(struct queue));

q->front = -1;

q->rear = -1;

return q;}

// Check if the queue is empty

int isEmpty(struct queue* q) {

if (q->rear == -1)

return 1;

else

return 0;}

// Adding elements into queue

void enqueue(struct queue* q, int value) {

if (q->rear == SIZE - 1)

printf("\nQueue is Full!!");

else {

if (q->front == -1)

q-front = 0;

q->rear++;

q->items[q->rear] = value; }}

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

59

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

// Removing elements from queue

int dequeue(struct queue* q) {

int item;

if (isEmpty(q)) {

printf("Queue is empty");

item = -1;

} else {

item = q->items[q->front];

q->front++;

if (q->front > q->rear) {

printf("Resetting queue ");

q->front = q->rear = -1;

} }

return item;}

// Print the queue

void printQueue(struct queue* q) {

int i = q->front;

if (isEmpty(q)) {

printf("Queue is empty");

} else {

printf("\nQueue contains \n");

for (i = q->front; i < q->rear + 1; i++) {

printf("%d ", q->items[i]);

} }}

int main() {

struct Graph* graph = createGraph(6);

addEdge(graph, 0, 1);

 addEdge(graph, 0, 2);

addEdge(graph, 1, 2);

addEdge(graph, 1, 4);

addEdge(graph, 1, 3);

addEdge(graph, 2, 4);

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

60

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

addEdge(graph, 3, 4);

bfs(graph, 0);

return 0; }

Output:

DFS in C

PROGRAM

#include <stdio.h>

#include <stdlib.h>

struct node {

int vertex;

struct node* next;

};

struct node* createNode(int v);

struct Graph {

int numVertices;

int* visited;

// We need int** to store a two dimensional array.

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

61

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

// Similary, we need struct node** to store an array of Linked lists

struct node** adjLists;

};

// DFS algo

void DFS(struct Graph* graph, int vertex) {

struct node* adjList = graph->adjLists[vertex];

struct node* temp = adjList;

graph->visited[vertex] = 1;

printf("Visited %d \n", vertex);

while (temp != NULL) {

int connectedVertex = temp->vertex;

if (graph->visited[connectedVertex] == 0) {

DFS(graph, connectedVertex);

}

temp = temp->next;

}}

// Create a node

struct node* createNode(int v) {

struct node* newNode = malloc(sizeof(struct node));

newNode->vertex = v;

newNode->next = NULL;

return newNode;

}

// Create graph

struct Graph* createGraph(int vertices) {

struct Graph* graph = malloc(sizeof(struct Graph));

graph->numVertices = vertices;

graph->adjLists = malloc(vertices * sizeof(struct node*));

graph->visited = malloc(vertices * sizeof(int));

int i;

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

62

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

for (i = 0; i < vertices; i++) {

graph->adjLists[i] = NULL;

graph->visited[i] = 0;

}

return graph;

}

// Add edge

void addEdge(struct Graph* graph, int src, int dest) {

// Add edge from src to dest

struct node* newNode = createNode(dest);

newNode->next = graph->adjLists[src];

graph->adjLists[src] = newNode;

// Add edge from dest to src

newNode = createNode(src);

newNode->next = graph->adjLists[dest];

graph->adjLists[dest] = newNode;

}

// Print the graph

void printGraph(struct Graph* graph) {

int v;

for (v = 0; v < graph->numVertices; v++) {

struct node* temp = graph->adjLists[v];

printf("\n Adjacency list of vertex %d\n ", v);

while (temp) {

printf("%d -> ", temp->vertex);

temp = temp->next;

}

printf("\n");

}}

int main() {

struct Graph* graph = createGraph(4);

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

63

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

addEdge(graph, 0, 1);

addEdge(graph, 0, 2);

addEdge(graph, 1, 2);

addEdge(graph, 2, 3);

printGraph(graph);

DFS(graph, 2);

return 0; }

Output:

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

64

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

EXPERIMENT-10

OBJECTIVE

Implementation of binary search in arrays and on linked Binary Search Tree.

PROGRAM

#include <stdio.h>

int binarySearch(int a[], int beg, int end, int val)

{

int mid;

if(end >= beg)

{ mid = (beg + end)/2;

 /* if the item to be searched is present at middle */

if(a[mid] == val)

{

return mid+1;

}

/* if the item to be searched is smaller than middle, then it can only be in left subarray */

else if(a[mid] < val)

{

return binarySearch(a, mid+1, end, val);

}

/* if the item to be searched is greater than middle, then it can only be in right subarray */

else

{

return binarySearch(a, beg, mid-1, val);

}

}

return -1;

}

int main() {

int a[] = {11, 14, 25, 30, 40, 41, 52, 57, 70}; // given array

Poornima College of Engineering, Jaipur Data Structure & Algorithm Lab Manual

65

Data Structure & Algorithm Lab (3CS4-21) Manual Department of Computer Engineering

int val = 40; // value to be searched

int i;

int n = sizeof(a) / sizeof(a[0]); // size of array

int res = binarySearch(a, 0, n-1, val); // Store result

printf("The elements of the array are - ");

for (i = 0; i < n; i++)

printf("%d ", a[i]);

printf("\nElement to be searched is - %d", val);

if (res == -1)

printf("\nElement is not present in the array");

else

printf("\nElement is present at %d position of array", res);

return 0;

}

OUTPUT:

Poornima College of Engineering, Jaipur Data Structure & algorithm Lab Manual

66

EXPERIMENT-11

OBJECTIVE

Implementation of different sorting algorithm like insertion, quick, heap, bubble and many

more sorting algorithms.

Bubble sort

PROGRAM

#include<stdio.h>

void print(int a[], int n) //function to print array elements

{ int i;

for(i = 0; i < n; i++)

{ printf("%d ",a[i]);

}}

void bubble(int a[], int n) // function to implement bubble sort

{ int i, j, temp;

for(i = 0; i < n; i++)

{

for(j = i+1; j < n; j++)

{

if(a[j] < a[i])

{

 temp = a[i]; a[i] = a[j]; a[j] = temp;

}

}}}

void main ()

{

int i, j,temp;

int a[5] = { 10, 35, 32, 13, 26};

int n = sizeof(a)/sizeof(a[0]);

printf("Before sorting array

elements are - \n"); print(a, n);

bubble(a, n);

printf("\nAfter sorting array

Poornima College of Engineering, Jaipur Data Structure & algorithm Lab Manual

67

elements are - \n"); print(a, n);

}

OUTPUT

SELECTION SORT

PROGRAM

#include <stdio.h>

void selection(int arr[], int n)

{

int i, j, small;

for (i = 0; i < n-1; i++) // One by one move boundary of unsorted subarray

{

small = i; //minimum element in unsorted array

for (j = i+1; j < n; j++)

 if (arr[j] < arr[small])

 small = j;

// Swap the minimum element with the first element

int temp = arr[small];

arr[small] = arr[i]; arr[i] = temp;

}

}

void printArr(int a[], int n) /* function to print the array */

{

Poornima College of Engineering, Jaipur Data Structure & algorithm Lab Manual

68

int i;

for (i = 0; i < n; i++) printf("%d ", a[i]);

}

int main()

{

int a[] = { 12, 31, 25, 8, 32, 17 };

int n = sizeof(a) / sizeof(a[0]);

printf("Before sorting array elements are - \n");

printArr(a, n); selection(a, n);

printf("\nAfter sorting array elements are - \n"); printArr(a, n);

return 0;

}

Output:

INSERTION SORT

PROGRAM

#include <stdio.h>

void insert(int a[], int n) /* function to sort an aay with insertion sort */

{

int i, j, temp;

for (i = 1; i < n; i++) {

 temp = a[i];

j = i - 1;

while(j>=0 && temp <= a[j]) /* Move the elements greater than temp to one

Poornima College of Engineering, Jaipur Data Structure & algorithm Lab Manual

69

position ahead from their current position*/

{

 a[j+1] = a[j]; j = j-1;

}

 a[j+1] = temp;

}

}

void printArr(int a[], int n) /* function to print the array */

{ int i;

for (i = 0; i < n; i++)

printf("%d ", a[i]);

}

int main()

{int a[] = { 12, 31, 25, 8, 32, 17 };

int n = sizeof(a) / sizeof(a[0]);

printf("Before sorting array elements are - \n");

printArr(a, n);

insert(a, n);

printf("\nAfter sorting array elements are - \n");

printArr(a, n);

return 0;

}

Output:

Poornima College of Engineering, Jaipur Data Structure & algorithm Lab Manual

70

QUICK SORT

PROGRAM

#include <stdio.h>

int partition (int a[], int start, int end)

{

int pivot = a[end]; // pivot element

int j, i = (start - 1);

for (j = start; j <= end - 1; j++)

{

if (a[j] < pivot)

{ i++;

int t = a[i];

a[i] = a[j];

 a[j]=t;

} }

int t = a[i+1];

a[i+1] = a[end];

a[end] = t;

return (i + 1); }

void quick(int a[], int start, int end)

{ if (start < end)

 { int p = partition(a, start, end); //p is the partitioning index

 quick(a, start, p - 1);

 quick(a, p + 1, end);

} }

void printArr(int a[], int n)

{ int i;

for (i = 0; i < n; i++)

printf("%d ", a[i]);

 }

Poornima College of Engineering, Jaipur Data Structure & algorithm Lab Manual

71

int main()

{ int a[] = { 24, 9, 29, 14, 19, 27 };

int n = sizeof(a) / sizeof(a[0]);

printf("Before sorting array elements are - \n"); printArr(a, n);

quick(a, 0, n - 1);

printf("\nAfter sorting array elements are - \n"); printArr(a, n);

return 0; }
Output:

Poornima College of Engineering, Jaipur Data Structure & algorithm Lab Manual

72

BEYOND THE SYLLABUS EXPERIMENT-1

OBJECTIVE

WAP to implement Radix Sort.

PROGRAM

#include <stdio.h>

int getMax(int a[], int n)

{ int max = a[0];

int i;

for(i = 1; i<n; i++)

{ if(a[i] > max)

max = a[i];

}

return max; //maximum element from the array

}

void countingSort(int a[], int n, int place) // function to implement counting sort

{

int Output[n + 1];

int count[10] = {0};

 int i;

// Calculate count of elements

for (i = 0; i < n; i++)

 count[(a[i] / place) % 10]++;

// Calculate cumulative frequency

for (i = 1; i < 10; i++)

 count[i] += count[i - 1];

// Place the elements in sorted order

for (i = n - 1; i >= 0; i--) {

Output[count[(a[i] / place) % 10] - 1] = a[i];

Poornima College of Engineering, Jaipur Data Structure & algorithm Lab Manual

73

count[(a[i] / place) % 10]--;

}

for (i = 0; i < n; i++) a[i] = Output[i];

}

// function to implement radix sort

void radixsort(int a[], int n)

{

 int place ;

 // get maximum element from array

 int max = getMax(a, n);

 // Apply counting sort to sort elements based on place value

 for (place = 1; max / place > 0; place *= 10)

 countingSort(a, n, place);

}

// function to print array elements

void printArray(int a[], int n)

{ int i;

for (i = 0; i < n; ++i)

{

 printf("%d ", a[i]);

} printf("\n");

}

int main() {

int a[] = {181, 289, 390, 121, 145, 736, 514, 888, 122};

int n = sizeof(a) / sizeof(a[0]);

printf("Before sorting array elements are - \n");

 printArray(a,n);

radixsort(a, n);

printf("After applying Radix sort, the array elements are - \n");

printArray(a, n);

}

Poornima College of Engineering, Jaipur Data Structure & algorithm Lab Manual

74

Output:

Poornima College of Engineering, Jaipur Data Structure & algorithm Lab Manual

75

BEYOND THE SYLLABUS EXPERIMENT-2

OBJECTIVE

WAP to implement Count Sort.

PROGRAM

#include<stdio.h>

int getMax(int a[], int n)

{ int i, max = a[0];

for(i = 1; i<n; i++)

{ if(a[i] > max)

max = a[i];

 }

return max; //maximum element from the array

}

void countSort(int a[], int n) // function to perform counting sort

{ int Output[n+1];

int max = getMax(a, n);

int count[max+1]; //create count array with size [max+1]

int i;

for (i = 0; i <= max; ++i)

count[i] = 0; // Initialize count array with all zeros

for (i = 0; i < n; i++) // Store the count of each element

 count[a[i]]++;

for(i = 1; i<=max; i++)

 count[i] += count[i-1]; //find cumulative frequency

 for (i = n - 1; i >= 0; i--)

 {

Output[count[a[i]] - 1] = a[i];

count[a[i]]--; // decrease count for same numbers

 }

for(i = 0; i<n; i++)

a[i] = Output[i]; //store the sorted elements into main array

Poornima College of Engineering, Jaipur Data Structure & algorithm Lab Manual

76

}

void printArr(int a[], int n) /* function to print the array */

 { int i;

for (i = 0; i < n; i++) printf("%d ", a[i]);

 }

int main()

 {

int a[] = { 11, 30, 24, 7, 31, 16 };

int n = sizeof(a)/sizeof(a[0]);

printf("Before sorting array elements are - \n");

printArr(a, n);

countSort(a, n);

printf("\nAfter sorting array elements are - \n");

printArr(a, n);

return 0;

}

Output:

