
1. CO1 PO1 Define the meaning of software design, explain the design

fundamentals for software design. (5)

2. CO1 PO2 What do you mean by effective modular design, explain in

detail. (5)

3. CO2 PO4 Explain the Design Documentation with example. (5)

4. CO1 PO3 List the program evaluation and explain programming

styles. (5)

Time: 50 min. M.M. 20

 Date: 15/10/2023

Assignment-1

Software Engineering (3IT4-07)

Solution 1:

Software Design is also a process to plan or convert the software

requirements into a step that are needed to be carried out to develop a

software system. There are several principles that are used to organize and

arrange the structural components of Software design. Software Designs in

which these principles are applied affect the content and the working process

of the software from the beginning.

Principles Of Software Design :

1. Should not suffer from “Tunnel Vision” –

While designing the process, it should not suffer from “tunnel vision” which

means that is should not only focus on completing or achieving the aim but on

other effects also.

2. Traceable to analysis model –

The design process should be traceable to the analysis model which means it

should satisfy all the requirements that software requires to develop a high-

quality product.

3. Should not “Reinvent The Wheel” –

The design process should not reinvent the wheel that means it should not waste

time or effort in creating things that already exist. Due to this, the overall

development will get increased.

4. Minimize Intellectual distance –

The design process should reduce the gap between real-world problems and

software solutions for that problem meaning it should simply minimize

intellectual distance.

5. Exhibit uniformity and integration –
The design should display uniformity which means it should be uniform

throughout the process without any change. Integration means it should mix or

combine all parts of software i.e. subsystems into one system.

6. Accommodate change –

The software should be designed in such a way that it accommodates the

change implying that the software should adjust to the change that is required to

be done as per the user’s need.

7. Degrade gently –

The software should be designed in such a way that it degrades gracefully

which means it should work properly even if an error occurs during the

execution.

8. Assessed or quality –

The design should be assessed or evaluated for the quality meaning that during

the evaluation, the quality of the design needs to be checked and focused on.

9. Review to discover errors –

The design should be reviewed which means that the overall evaluation should

be done to check if there is any error present or if it can be minimized.

10. Design is not coding and coding is not design –

Design means describing the logic of the program to solve any problem and

coding is a type of language that is used for the implementation of a design.

Solution 2:

Any software comprises of many systems which contains several sub-systems and

those sub-systems further contains their sub-systems. So, designing a complete

system in one go comprising of each and every required functionality is a hectic

work and the process can have many errors because of its vast size.

Thus in order to solve this problem the developing team breakdown the complete

software into various modules. A module is defined as the unique and addressable

components of the software which can be solved and modified independently

without disturbing (or affecting in very small amount) other modules of the

software. Thus every software design should follow modularity.

The process of breaking down a software into multiple independent modules where

each module is developed separately is called Modularization.

Effective modular design can be achieved if the partitioned modules are separately

solvable, modifiable as well as compilable. Here separate compilable modules

means that after making changes in a module there is no need of recompiling the

whole software system.

Cohesion:

Cohesion is a measure of strength in relationship between various functions within

a module. It is of 7 types which are listed below in the order of high to low

cohesion:

1. Functional cohesion

2. Sequential cohesion

3. Communicational cohesion

4. Procedural cohesion

5. Temporal cohesion

6. Logical cohesion

7. Co-incidental cohesion

Coupling:

Coupling is a measure of strength in relationship between various modules within a

software. It is of 6 types which are listed below in the order of low to high

coupling:

1. Data Coupling

2. Stamp Coupling

3. Control Coupling

4. External Coupling

5. Common Coupling

6. Content Coupling

Solution 3:

The design phase of software development deals with transforming the customer

requirements as described in the SRS documents into a form implementable using

a programming language. The software design process can be divided into the

following three levels of phases design:

 Interface Design

 Architectural Design

 Detailed Design

Software Design Document:

Software Design Document is a written document that provides a description of a

software product in terms of architecture of software with various components with

specified functionality.

The design specification addresses different aspects of the design model and is

completed as the designer refines his representation of the software.

Importance of Design Documentation:

1. Requirements are well understood: With proper documentation, we can remove

inconsistencies and conflicts about the requirements. Requirements are well

understood by every team member.

2. Architecture/Design of product: Architecture/Design documents give us a

complete overview of how the product look like and better insight to the

customer/user about their product.

3. New Person can also work on the project: New person to the project can very

easily understand the project through documentations and start working on it. So,

developers need to maintain the documentation and keep upgrading it according to

the changes made in the product/software.

4. Everything is well Stated: This documentation is helpful to understand each and

every working of the product. It explains each and every feature of the

product/software.

5. Proper Communication: Through documentation, we have good communication

with every member who is part of the project/software. Helpful in understanding

role and contribution of each and every member.

Solution 4:

Programming style refers to the technique used in writing the source code for a

computer program. Most programming styles are designed to help programmers

quickly read and understands the program as well as avoid making errors. (Older

programming styles also focused on conserving screen space.) A good coding style

can overcome the many deficiencies of a first programming language, while poor

style can defeat the intent of an excellent language.

The goal of good programming style is to provide understandable, straightforward,

elegant code. The programming style used in a various program may be derived from

the coding standards or code conventions of a company or other computing

organization, as well as the preferences of the actual programmer.

1. Clarity and simplicity of Expression: The programs should be designed in such

a manner so that the objectives of the program is clear.

2. Naming: In a program, you are required to name the module, processes, and

variable, and so on. Care should be taken that the naming style should not be cryptic

and non-representative.

 3. Control Constructs: It is desirable that as much as a possible single entry and

single exit constructs used.

4. Information hiding: The information secure in the data structures should be

hidden from the rest of the system where possible. Information hiding can decrease

the coupling between modules and make the system more maintainable.

5. Nesting: Deep nesting of loops and conditions greatly harm the static and dynamic

behavior of a program. It also becomes difficult to understand the program logic, so

it is desirable to avoid deep nesting.

6. User-defined types: Make heavy use of user-defined data types like enum, class,

structure, and union. These data types make your program code easy to write and

easy to understand.

7. Module size: The module size should be uniform. The size of the module should

not be too big or too small. If the module size is too large, it is not generally

functionally cohesive. If the module size is too small, it leads to unnecessary

overheads.

8. Module Interface: A module with a complex interface should be carefully

examined.

9. Side-effects: When a module is invoked, it sometimes has a side effect of

modifying the program state. Such side-effect should be avoided where as possible.

